lance_encoding/
repdef.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors

//! Utilities for rep-def levels
//!
//! Repetition and definition levels are a way to encode multipile validity / offsets arrays
//! into a single buffer.  They are a form of "zipping" buffers together that takes advantage
//! of the fact that, if the outermost array is invalid, then the validity of the inner items
//! is irrelevant.
//!
//! Note: the concept of repetition & definition levels comes from the Dremel paper and has
//! been implemented in Apache Parquet.  However, the implementation here is not necessarily
//! compatible with Parquet.  For example, we use 0 to represent the "inner-most" item and
//! Parquet uses 0 to represent the "outer-most" item.
//!
//! # Repetition Levels
//!
//! With repetition levels we convert a sparse array of offsets into a dense array of levels.
//! These levels are marked non-zero whenever a new list begins.  In other words, given the
//! list array with 3 rows [{<0,1>, <>, <2>}, {<3>}, {}], [], [{<4>}] we would have three
//! offsets arrays:
//!
//! Outer-most ([]): [0, 3, 3, 4]
//! Middle     ({}): [0, 3, 4, 4, 5]
//! Inner      (<>): [0, 2, 2, 3, 4, 5]
//! Values         : [0, 1, 2, 3, 4]
//!
//! We can convert these into repetition levels as follows:
//!
//! | Values | Repetition |
//! | ------ | ---------- |
//! |      0 |          3 | // Start of outer-most list
//! |      1 |          0 | // Continues inner-most list (no new lists)
//! |      - |          1 | // Start of new inner-most list (empty list)
//! |      2 |          1 | // Start of new inner-most list
//! |      3 |          2 | // Start of new middle list
//! |      - |          2 | // Start of new inner-most list (empty list)
//! |      - |          3 | // Start of new outer-most list (empty list)
//! |      4 |          0 | // Start of new outer-most list
//!
//! Note: We actually have MORE repetition levels than values.  This is because the repetition
//! levels need to be able to represent empty lists.
//!
//! # Definition Levels
//!
//! Definition levels are simpler.  We can think of them as zipping together various validity (from
//! different levels of nesting) into a single buffer.  For example, we could zip the arrays
//! [1, 1, 0, 0] and [1, 0, 1, 0] into [11, 10, 01, 00].  However, 00 and 01 are redundant.  If the
//! outer level is null then the validity of the inner levels is irrelevant.  To save space we instead
//! encode a "level" which is the "depth" of the null.  Let's look at a more complete example:
//!
//! Array: [{"middle": {"inner": 1]}}, NULL, {"middle": NULL}, {"middle": {"inner": NULL}}]
//!
//! In Arrow we would have the following validity arrays:
//! Outer validity : 1, 0, 1, 1
//! Middle validity: 1, ?, 0, 1
//! Inner validity : 1, ?, ?, 0
//! Values         : 1, ?, ?, ?
//!
//! The ? values are undefined in the Arrow format.  We can convert these into definition levels as follows:
//!
//! | Values | Definition |
//! | ------ | ---------- |
//! |      1 |          0 | // Valid at all levels
//! |      - |          3 | // Null at outer level
//! |      - |          2 | // Null at middle level
//! |      - |          1 | // Null at inner level
//!
//! # Compression
//!
//! Note that we only need 2 bits of definition levels to represent 3 levels of nesting.  Definition
//! levels are always more compact than the input validity arrays.
//!
//! Repetition levels are more complex.  If there are very large lists then a sparse array of offsets
//! (which has one element per list) might be more compact than a dense array of repetition levels
//! (which has one element per list value, possibly even more if there are empty lists).
//!
//! However, both repetition levels and definition levels are typically very compressible with RLE.
//!
//! However, in Lance we don't always take advantage of that compression because we want to be able
//! to zip rep-def levels together with our values.  This gives us fewer IOPS when accessing row values.

// TODO: Right now, if a layer has no nulls, but other layers do, then we still use
//       up a repetition layer for the no-null spot.  For example, if we have four
//       levels of rep: [has nulls, has nulls, no nulls, has nulls] then we will say:
//       0 = valid
//       1 = layer 4 null
//       2 = layer 3 null
//       3 = layer 2 null (useless)
//       4 = layer 1 null
//
// This means we end up with 3 bits per level instead of 2.  We could instead record
// the layers that are all null somewhere else and not require wider rep levels.

use std::{iter::Zip, sync::Arc};

use arrow_array::OffsetSizeTrait;
use arrow_buffer::{
    ArrowNativeType, BooleanBuffer, BooleanBufferBuilder, NullBuffer, OffsetBuffer, ScalarBuffer,
};
use lance_core::{utils::bit::log_2_ceil, Error, Result};
use snafu::{location, Location};

// We assume 16 bits is good enough for rep-def levels.  This gives us
// 65536 levels of struct nesting and list nesting.
pub type LevelBuffer = Vec<u16>;

// As we build up rep/def from arrow arrays we record a
// series of RawRepDef objects
#[derive(Clone, Debug)]
enum RawRepDef {
    Offsets(Arc<[i64]>),
    Validity(BooleanBuffer),
    NoNull(usize),
}

/// Represents repetition and definition levels that have been
/// serialized into a pair of (optional) level buffers
#[derive(Debug)]
pub struct SerializedRepDefs {
    // If None, there are no lists
    pub repetition_levels: Option<LevelBuffer>,
    // If None, there are no nulls
    pub definition_levels: Option<LevelBuffer>,
}

impl SerializedRepDefs {
    /// Creates an empty SerializedRepDefs (no repetition, all valid)
    pub fn empty() -> Self {
        Self {
            repetition_levels: None,
            definition_levels: None,
        }
    }
}

/// The RepDefBuilder is used to collect offsets & validity buffers
/// from arrow structures.  Once we have those we use the SerializerContext
/// to build the actual repetition and definition levels by walking through
/// the arrow constructs in reverse order.
///
/// The algorithm for definition levels is pretty simple
///
/// Given:
///  - a validity buffer of [T, F, F, T, T]
///  - a current def level of 5
///  - a current definitions of [0, 1, 3, 3, 0]
///
/// We walk through the definitions and replace them with
///   the current level whenever a value is invalid.  Thus
///   our output is: [0, 5, 5, 3, 0]
///
/// The algorithm for repetition levels is more complex.
///
/// The first time we see an offsets buffer we initialize the
/// rep levels to have a value of 1 whenever a list starts and 0
/// otherwise.
///
/// So, given offsets of [0, 3, 5] and no repetition we create
/// rep levels [1 0 0 1 0]
///
/// However, we also record the offsets into our current rep and
/// def levels and all operations happen in context of those offsets.
///
/// For example, continuing the above scenario we might then see validity
/// of [T, F].  This is strange since our validity bitmap has 2 items but
/// we would have 5 definition levels.  We can use our current offsets
/// ([0, 3, 5]) to expand [T, F] into [T, T, T, F, F].
struct SerializerContext {
    last_offsets: Option<Arc<[i64]>>,
    rep_levels: LevelBuffer,
    def_levels: LevelBuffer,
    current_rep: u16,
    current_def: u16,
    has_nulls: bool,
}

impl SerializerContext {
    fn new(len: usize, has_nulls: bool) -> Self {
        Self {
            last_offsets: None,
            rep_levels: LevelBuffer::with_capacity(len),
            def_levels: if has_nulls {
                LevelBuffer::with_capacity(len)
            } else {
                LevelBuffer::default()
            },
            current_rep: 1,
            current_def: 1,
            has_nulls: false,
        }
    }

    fn record_all_valid(&mut self, len: usize) {
        self.current_def += 1;
        if self.def_levels.is_empty() {
            self.def_levels.resize(len, 0);
        }
    }

    fn record_offsets(&mut self, offsets: &Arc<[i64]>) {
        let rep_level = self.current_rep;
        self.current_rep += 1;
        if let Some(last_offsets) = &self.last_offsets {
            let mut new_last_off = Vec::with_capacity(offsets.len());
            for off in offsets[..offsets.len() - 1].iter() {
                let offset_ctx = last_offsets[*off as usize];
                new_last_off.push(offset_ctx);
                self.rep_levels[offset_ctx as usize] = rep_level;
            }
            self.last_offsets = Some(new_last_off.into());
        } else {
            self.rep_levels.resize(*offsets.last().unwrap() as usize, 0);
            for off in offsets[..offsets.len() - 1].iter() {
                self.rep_levels[*off as usize] = rep_level;
            }
            self.last_offsets = Some(offsets.clone());
        }
    }

    fn record_validity(&mut self, validity: &BooleanBuffer) {
        self.has_nulls = true;
        let def_level = self.current_def;
        self.current_def += 1;
        if self.def_levels.is_empty() {
            self.def_levels.resize(validity.len(), 0);
        }
        if let Some(last_offsets) = &self.last_offsets {
            last_offsets
                .windows(2)
                .zip(validity.iter())
                .for_each(|(w, valid)| {
                    if !valid {
                        self.def_levels[w[0] as usize..w[1] as usize].fill(def_level);
                    }
                });
        } else {
            self.def_levels
                .iter_mut()
                .zip(validity.iter())
                .for_each(|(def, valid)| {
                    if !valid {
                        *def = def_level;
                    }
                });
        }
    }

    fn build(self) -> SerializedRepDefs {
        SerializedRepDefs {
            definition_levels: if self.has_nulls {
                Some(self.def_levels)
            } else {
                None
            },
            repetition_levels: if self.current_rep > 1 {
                Some(self.rep_levels)
            } else {
                None
            },
        }
    }
}

/// A structure used to collect validity buffers and offsets from arrow
/// arrays and eventually create repetition and definition levels
///
/// As we are encoding the structural encoders are given this struct and
/// will record the arrow information into it.  Once we hit a leaf node we
/// serialize the data into rep/def levels and write these into the page.
#[derive(Clone, Default)]
pub struct RepDefBuilder {
    // The rep/def info we have collected so far
    repdefs: Vec<RawRepDef>,
    // The current length, can get larger as we traverse lists (e.g. an
    // array might have 5 lists which results in 50 items)
    //
    // Starts uninitialized until we see the first rep/def item
    len: Option<usize>,
}

impl RepDefBuilder {
    fn check_validity_len(&mut self, validity: &NullBuffer) {
        if let Some(len) = self.len {
            assert!(validity.len() == len);
        }
        self.len = Some(validity.len());
    }

    fn num_layers(&self) -> usize {
        self.repdefs.len()
    }

    fn is_empty(&self) -> bool {
        self.repdefs
            .iter()
            .all(|r| matches!(r, RawRepDef::NoNull(_)))
    }

    /// Returns true if there is only a single layer of definition
    pub fn is_simple_validity(&self) -> bool {
        self.repdefs.len() == 1 && matches!(self.repdefs[0], RawRepDef::Validity(_))
    }

    /// Return True if any layer has a validity bitmap
    ///
    /// Return False if all layers are non-null (the def levels can
    /// be skipped in this case)
    pub fn has_nulls(&self) -> bool {
        self.repdefs
            .iter()
            .any(|rd| matches!(rd, RawRepDef::Validity(_)))
    }

    /// Registers a nullable validity bitmap
    pub fn add_validity_bitmap(&mut self, validity: NullBuffer) {
        self.check_validity_len(&validity);
        self.repdefs
            .push(RawRepDef::Validity(validity.into_inner()));
    }

    /// Registers an all-valid validity layer
    pub fn add_no_null(&mut self, len: usize) {
        self.repdefs.push(RawRepDef::NoNull(len));
    }

    fn check_offset_len(&mut self, offsets: &[i64]) {
        if let Some(len) = self.len {
            assert!(offsets.len() == len + 1);
        }
        self.len = Some(offsets[offsets.len() - 1] as usize);
    }

    /// Adds a layer of offsets
    ///
    /// Note: a List/LargeList/etc. array has both offsets and validity.  The
    /// caller should register the validity before registering the offsets
    pub fn add_offsets<O: OffsetSizeTrait>(&mut self, repetition: OffsetBuffer<O>) {
        // We should be able to zero-copy
        if O::IS_LARGE {
            let inner = repetition.into_inner();
            let len = inner.len();
            let i64_buff = ScalarBuffer::new(inner.into_inner(), 0, len);
            let offsets = Vec::from(i64_buff);
            self.check_offset_len(&offsets);
            self.repdefs.push(RawRepDef::Offsets(offsets.into()));
        } else {
            let inner = repetition.into_inner();
            let len = inner.len();
            let casted = ScalarBuffer::<i32>::new(inner.into_inner(), 0, len)
                .iter()
                .copied()
                .map(|o| o as i64)
                .collect::<Vec<_>>();
            self.check_offset_len(&casted);
            self.repdefs.push(RawRepDef::Offsets(casted.into()));
        }
    }

    // TODO: This is lazy.  We shouldn't need this concatenation pass.  We should be able
    // to concatenate as we build up the rep/def levels but I'm saving that for a
    // future optimization.
    fn concat_layers<'a>(mut layers: impl Iterator<Item = &'a RawRepDef>, len: usize) -> RawRepDef {
        let first = layers.next().unwrap();
        match &first {
            RawRepDef::NoNull(_) | RawRepDef::Validity(_) => {
                // Also lazy, building up a validity buffer just to throw it away
                // if there are no nulls
                let mut has_nulls = false;
                let mut builder = BooleanBufferBuilder::new(len);
                for layer in std::iter::once(first).chain(layers) {
                    match layer {
                        RawRepDef::NoNull(num_valid) => {
                            builder.append_n(*num_valid, true);
                        }
                        RawRepDef::Validity(validity) => {
                            has_nulls = true;
                            builder.append_buffer(validity);
                        }
                        _ => unreachable!(),
                    }
                }
                if has_nulls {
                    RawRepDef::Validity(builder.finish())
                } else {
                    RawRepDef::NoNull(builder.len())
                }
            }
            RawRepDef::Offsets(offsets) => {
                let mut all_offsets = Vec::with_capacity(len);
                all_offsets.extend(offsets.iter().copied());
                for layer in layers {
                    let last = *all_offsets.last().unwrap();
                    let RawRepDef::Offsets(offsets) = layer else {
                        unreachable!()
                    };
                    all_offsets.extend(offsets.iter().skip(1).map(|off| *off + last));
                }
                RawRepDef::Offsets(all_offsets.into())
            }
        }
    }

    /// Converts the validity / offsets buffers that have been gathered so far
    /// into repetition and definition levels
    pub fn serialize(builders: Vec<Self>) -> SerializedRepDefs {
        if builders.is_empty() {
            return SerializedRepDefs::empty();
        }
        if builders.iter().all(|b| b.is_empty()) {
            // No repetition, all-valid
            return SerializedRepDefs::empty();
        }
        let has_nulls = builders.iter().any(|b| b.has_nulls());
        let total_len = builders.iter().map(|b| b.len.unwrap()).sum();
        let mut context = SerializerContext::new(total_len, has_nulls);
        debug_assert!(builders
            .iter()
            .all(|b| b.num_layers() == builders[0].num_layers()));
        for layer_index in (0..builders[0].num_layers()).rev() {
            let layer =
                Self::concat_layers(builders.iter().map(|b| &b.repdefs[layer_index]), total_len);
            match layer {
                RawRepDef::Validity(def) => {
                    context.record_validity(&def);
                }
                RawRepDef::Offsets(rep) => {
                    context.record_offsets(&rep);
                }
                RawRepDef::NoNull(len) => {
                    context.record_all_valid(len);
                }
            }
        }
        context.build()
    }
}

/// Starts with serialized repetition and definition levels and unravels
/// them into validity buffers and offsets buffers
///
/// This is used during decoding to create the necessary arrow structures
#[derive(Debug)]
pub struct RepDefUnraveler {
    rep_levels: Option<LevelBuffer>,
    def_levels: Option<LevelBuffer>,
    // Current definition level to compare to.
    current_def_cmp: u16,
}

impl RepDefUnraveler {
    /// Creates a new unraveler from serialized repetition and definition information
    pub fn new(rep_levels: Option<LevelBuffer>, def_levels: Option<LevelBuffer>) -> Self {
        Self {
            rep_levels,
            def_levels,
            current_def_cmp: 0,
        }
    }

    /// Unravels a layer of offsets from the unraveler into the given offset width
    ///
    /// When decoding a list the caller should first unravel the offsets and then
    /// unravel the validity (this is the opposite order used during encoding)
    pub fn unravel_offsets<T: ArrowNativeType>(&mut self) -> Result<OffsetBuffer<T>> {
        let rep_levels = self
            .rep_levels
            .as_mut()
            .expect("Expected repetition level but data didn't contain repetition");
        let mut offsets: Vec<T> = Vec::with_capacity(rep_levels.len() + 1);
        let mut curlen: usize = 0;
        let to_offset = |val: usize| {
            T::from_usize(val)
            .ok_or_else(|| Error::invalid_input("A single batch had more than i32::MAX values and so a large container type is required", location!()))
        };
        if let Some(def_levels) = &mut self.def_levels {
            assert!(rep_levels.len() == def_levels.len());
            // This is a strange access pattern.  We are iterating over the rep/def levels and
            // at the same time writing the rep/def levels.  This means we need both a mutable
            // and immutable reference to the rep/def levels.
            let mut read_idx = 0;
            let mut write_idx = 0;
            while read_idx < rep_levels.len() {
                // SAFETY: We assert that rep_levels and def_levels have the same
                // len and read_idx and write_idx can never go past the end.
                unsafe {
                    let rep_val = *rep_levels.get_unchecked(read_idx);
                    if rep_val != 0 {
                        // Finish the current list
                        offsets.push(to_offset(curlen)?);
                        *rep_levels.get_unchecked_mut(write_idx) = rep_val - 1;
                        *def_levels.get_unchecked_mut(write_idx) =
                            *def_levels.get_unchecked(read_idx);
                        write_idx += 1;
                    }
                    curlen += 1;
                    read_idx += 1;
                }
            }
            offsets.push(to_offset(curlen)?);
            rep_levels.truncate(offsets.len() - 1);
            def_levels.truncate(offsets.len() - 1);
            Ok(OffsetBuffer::new(ScalarBuffer::from(offsets)))
        } else {
            // SAFETY: See above loop
            let mut read_idx = 0;
            let mut write_idx = 0;
            while read_idx < rep_levels.len() {
                // SAFETY: read_idx / write_idx cannot go past rep_levels.len()
                unsafe {
                    let rep_val = *rep_levels.get_unchecked(read_idx);
                    if rep_val != 0 {
                        // Finish the current list
                        offsets.push(to_offset(curlen)?);
                        *rep_levels.get_unchecked_mut(write_idx) = rep_val - 1;
                        write_idx += 1;
                    }
                    curlen += 1;
                    read_idx += 1;
                }
            }
            offsets.push(to_offset(curlen)?);
            rep_levels.truncate(offsets.len() - 1);
            Ok(OffsetBuffer::new(ScalarBuffer::from(offsets)))
        }
    }

    /// Unravels a layer of validity from the definition levels
    pub fn unravel_validity(&mut self) -> Option<NullBuffer> {
        let Some(def_levels) = &self.def_levels else {
            return None;
        };
        let current_def_cmp = self.current_def_cmp;
        self.current_def_cmp += 1;
        let validity = BooleanBuffer::from_iter(def_levels.iter().map(|&r| r <= current_def_cmp));
        if validity.count_set_bits() == validity.len() {
            None
        } else {
            Some(NullBuffer::new(validity))
        }
    }
}

/// A [`ControlWordIterator`] when there are both repetition and definition levels
///
/// The iterator will put the repetition level in the upper bits and the definition
/// level in the lower bits.  The number of bits used for each level is determined
/// by the width of the repetition and definition levels.
#[derive(Debug)]
pub struct BinaryControlWordIterator<I: Iterator<Item = (u16, u16)>, W> {
    repdef: I,
    def_width: usize,
    rep_mask: u16,
    def_mask: u16,
    bits_rep: u8,
    bits_def: u8,
    phantom: std::marker::PhantomData<W>,
}

impl<I: Iterator<Item = (u16, u16)>> BinaryControlWordIterator<I, u8> {
    fn append_next(&mut self, buf: &mut Vec<u8>) {
        let next = self.repdef.next().unwrap();
        let control_word: u8 =
            (((next.0 & self.rep_mask) as u8) << self.def_width) + ((next.1 & self.def_mask) as u8);
        buf.push(control_word);
    }
}

impl<I: Iterator<Item = (u16, u16)>> BinaryControlWordIterator<I, u16> {
    fn append_next(&mut self, buf: &mut Vec<u8>) {
        let next = self.repdef.next().unwrap();
        let control_word: u16 =
            ((next.0 & self.rep_mask) << self.def_width) + (next.1 & self.def_mask);
        let control_word = control_word.to_le_bytes();
        buf.push(control_word[0]);
        buf.push(control_word[1]);
    }
}

impl<I: Iterator<Item = (u16, u16)>> BinaryControlWordIterator<I, u32> {
    fn append_next(&mut self, buf: &mut Vec<u8>) {
        let next = self.repdef.next().unwrap();
        let control_word: u32 = (((next.0 & self.rep_mask) as u32) << self.def_width)
            + ((next.1 & self.def_mask) as u32);
        let control_word = control_word.to_le_bytes();
        buf.push(control_word[0]);
        buf.push(control_word[1]);
        buf.push(control_word[2]);
        buf.push(control_word[3]);
    }
}

/// A [`ControlWordIterator`] when there are only definition levels or only repetition levels
#[derive(Debug)]
pub struct UnaryControlWordIterator<I: Iterator<Item = u16>, W> {
    repdef: I,
    level_mask: u16,
    bits_rep: u8,
    bits_def: u8,
    phantom: std::marker::PhantomData<W>,
}

impl<I: Iterator<Item = u16>> UnaryControlWordIterator<I, u8> {
    fn append_next(&mut self, buf: &mut Vec<u8>) {
        let next = self.repdef.next().unwrap();
        buf.push((next & self.level_mask) as u8);
    }
}

impl<I: Iterator<Item = u16>> UnaryControlWordIterator<I, u16> {
    fn append_next(&mut self, buf: &mut Vec<u8>) {
        let next = self.repdef.next().unwrap() & self.level_mask;
        let control_word = next.to_le_bytes();
        buf.push(control_word[0]);
        buf.push(control_word[1]);
    }
}

impl<I: Iterator<Item = u16>> UnaryControlWordIterator<I, u32> {
    fn append_next(&mut self, buf: &mut Vec<u8>) {
        let next = (self.repdef.next().unwrap() & self.level_mask) as u32;
        let control_word = next.to_le_bytes();
        buf.push(control_word[0]);
        buf.push(control_word[1]);
        buf.push(control_word[2]);
        buf.push(control_word[3]);
    }
}

/// A [`ControlWordIterator`] when there are no repetition or definition levels
#[derive(Debug)]
pub struct NilaryControlWordIterator;

/// Helper function to get a bit mask of the given width
fn get_mask(width: u16) -> u16 {
    (1 << width) - 1
}

/// An iterator that generates control words from repetition and definition levels
///
/// "Control word" is just a fancy term for a single u8/u16/u32 that contains both
/// the repetition and definition in it.
///
/// In the large majority of case we only need a single byte to represent both the
/// repetition and definition levels.  However, if there is deep nesting then we may
/// need two bytes.  In the worst case we need 4 bytes though this suggests hundreds of
/// levels of nesting which seems unlikely to encounter in practice.
#[derive(Debug)]
pub enum ControlWordIterator {
    Binary8(BinaryControlWordIterator<Zip<std::vec::IntoIter<u16>, std::vec::IntoIter<u16>>, u8>),
    Binary16(BinaryControlWordIterator<Zip<std::vec::IntoIter<u16>, std::vec::IntoIter<u16>>, u16>),
    Binary32(BinaryControlWordIterator<Zip<std::vec::IntoIter<u16>, std::vec::IntoIter<u16>>, u32>),
    Unary8(UnaryControlWordIterator<std::vec::IntoIter<u16>, u8>),
    Unary16(UnaryControlWordIterator<std::vec::IntoIter<u16>, u16>),
    Unary32(UnaryControlWordIterator<std::vec::IntoIter<u16>, u32>),
    Nilary(NilaryControlWordIterator),
}

impl ControlWordIterator {
    /// Appends the next control word to the buffer
    pub fn append_next(&mut self, buf: &mut Vec<u8>) {
        match self {
            Self::Binary8(iter) => iter.append_next(buf),
            Self::Binary16(iter) => iter.append_next(buf),
            Self::Binary32(iter) => iter.append_next(buf),
            Self::Unary8(iter) => iter.append_next(buf),
            Self::Unary16(iter) => iter.append_next(buf),
            Self::Unary32(iter) => iter.append_next(buf),
            Self::Nilary(_) => {}
        }
    }

    /// Returns the number of bytes per control word
    pub fn bytes_per_word(&self) -> usize {
        match self {
            Self::Binary8(_) => 1,
            Self::Binary16(_) => 2,
            Self::Binary32(_) => 4,
            Self::Unary8(_) => 1,
            Self::Unary16(_) => 2,
            Self::Unary32(_) => 4,
            Self::Nilary(_) => 0,
        }
    }

    /// Returns the number of bits used for the repetition level
    pub fn bits_rep(&self) -> u8 {
        match self {
            Self::Binary8(iter) => iter.bits_rep,
            Self::Binary16(iter) => iter.bits_rep,
            Self::Binary32(iter) => iter.bits_rep,
            Self::Unary8(iter) => iter.bits_rep,
            Self::Unary16(iter) => iter.bits_rep,
            Self::Unary32(iter) => iter.bits_rep,
            Self::Nilary(_) => 0,
        }
    }

    /// Returns the number of bits used for the definition level
    pub fn bits_def(&self) -> u8 {
        match self {
            Self::Binary8(iter) => iter.bits_def,
            Self::Binary16(iter) => iter.bits_def,
            Self::Binary32(iter) => iter.bits_def,
            Self::Unary8(iter) => iter.bits_def,
            Self::Unary16(iter) => iter.bits_def,
            Self::Unary32(iter) => iter.bits_def,
            Self::Nilary(_) => 0,
        }
    }
}

/// Builds a [`ControlWordIterator`] from repetition and definition levels
/// by first calculating the width needed and then creating the iterator
/// with the appropriate width
pub fn build_control_word_iterator(
    rep: Option<Vec<u16>>,
    max_rep: u16,
    def: Option<Vec<u16>>,
    max_def: u16,
) -> ControlWordIterator {
    let rep_width = if max_rep == 0 {
        0
    } else {
        log_2_ceil(max_rep as u32) as u16
    };
    let rep_mask = if max_rep == 0 { 0 } else { get_mask(rep_width) };
    let def_width = if max_def == 0 {
        0
    } else {
        log_2_ceil(max_def as u32) as u16
    };
    let def_mask = if max_def == 0 { 0 } else { get_mask(def_width) };
    let total_width = rep_width + def_width;
    match (rep, def) {
        (Some(rep), Some(def)) => {
            let iter = rep.into_iter().zip(def);
            let def_width = def_width as usize;
            if total_width <= 8 {
                ControlWordIterator::Binary8(BinaryControlWordIterator {
                    repdef: iter,
                    rep_mask,
                    def_mask,
                    def_width,
                    bits_rep: rep_width as u8,
                    bits_def: def_width as u8,
                    phantom: std::marker::PhantomData,
                })
            } else if total_width <= 16 {
                ControlWordIterator::Binary16(BinaryControlWordIterator {
                    repdef: iter,
                    rep_mask,
                    def_mask,
                    def_width,
                    bits_rep: rep_width as u8,
                    bits_def: def_width as u8,
                    phantom: std::marker::PhantomData,
                })
            } else {
                ControlWordIterator::Binary32(BinaryControlWordIterator {
                    repdef: iter,
                    rep_mask,
                    def_mask,
                    def_width,
                    bits_rep: rep_width as u8,
                    bits_def: def_width as u8,
                    phantom: std::marker::PhantomData,
                })
            }
        }
        (Some(lev), None) => {
            let iter = lev.into_iter();
            if total_width <= 8 {
                ControlWordIterator::Unary8(UnaryControlWordIterator {
                    repdef: iter,
                    level_mask: rep_mask,
                    bits_rep: total_width as u8,
                    bits_def: 0,
                    phantom: std::marker::PhantomData,
                })
            } else if total_width <= 16 {
                ControlWordIterator::Unary16(UnaryControlWordIterator {
                    repdef: iter,
                    level_mask: rep_mask,
                    bits_rep: total_width as u8,
                    bits_def: 0,
                    phantom: std::marker::PhantomData,
                })
            } else {
                ControlWordIterator::Unary32(UnaryControlWordIterator {
                    repdef: iter,
                    level_mask: rep_mask,
                    bits_rep: total_width as u8,
                    bits_def: 0,
                    phantom: std::marker::PhantomData,
                })
            }
        }
        (None, Some(lev)) => {
            let iter = lev.into_iter();
            if total_width <= 8 {
                ControlWordIterator::Unary8(UnaryControlWordIterator {
                    repdef: iter,
                    level_mask: def_mask,
                    bits_rep: 0,
                    bits_def: total_width as u8,
                    phantom: std::marker::PhantomData,
                })
            } else if total_width <= 16 {
                ControlWordIterator::Unary16(UnaryControlWordIterator {
                    repdef: iter,
                    level_mask: def_mask,
                    bits_rep: 0,
                    bits_def: total_width as u8,
                    phantom: std::marker::PhantomData,
                })
            } else {
                ControlWordIterator::Unary32(UnaryControlWordIterator {
                    repdef: iter,
                    level_mask: def_mask,
                    bits_rep: 0,
                    bits_def: total_width as u8,
                    phantom: std::marker::PhantomData,
                })
            }
        }
        (None, None) => ControlWordIterator::Nilary(NilaryControlWordIterator {}),
    }
}

/// A parser to unwrap control words into repetition and definition levels
///
/// This is the inverse of the [`ControlWordIterator`].
#[derive(Copy, Clone, Debug)]
pub enum ControlWordParser {
    // First item is the bits to shift, second is the mask to apply (the mask can be
    // calculated from the bits to shift but we don't want to calculate it each time)
    BOTH8(u8, u32),
    BOTH16(u8, u32),
    BOTH32(u8, u32),
    REP8,
    REP16,
    REP32,
    DEF8,
    DEF16,
    DEF32,
    NIL,
}

impl ControlWordParser {
    fn parse_both<const WORD_SIZE: u8>(
        src: &[u8],
        dst_rep: &mut Vec<u16>,
        dst_def: &mut Vec<u16>,
        bits_to_shift: u8,
        mask_to_apply: u32,
    ) {
        match WORD_SIZE {
            1 => {
                let word = src[0];
                let rep = word >> bits_to_shift;
                let def = word & (mask_to_apply as u8);
                dst_rep.push(rep as u16);
                dst_def.push(def as u16);
            }
            2 => {
                let word = u16::from_le_bytes([src[0], src[1]]);
                let rep = word >> bits_to_shift;
                let def = word & mask_to_apply as u16;
                dst_rep.push(rep);
                dst_def.push(def);
            }
            4 => {
                let word = u32::from_le_bytes([src[0], src[1], src[2], src[3]]);
                let rep = word >> bits_to_shift;
                let def = word & mask_to_apply;
                dst_rep.push(rep as u16);
                dst_def.push(def as u16);
            }
            _ => unreachable!(),
        }
    }

    fn parse_one<const WORD_SIZE: u8>(src: &[u8], dst: &mut Vec<u16>) {
        match WORD_SIZE {
            1 => {
                let word = src[0];
                dst.push(word as u16);
            }
            2 => {
                let word = u16::from_le_bytes([src[0], src[1]]);
                dst.push(word);
            }
            4 => {
                let word = u32::from_le_bytes([src[0], src[1], src[2], src[3]]);
                dst.push(word as u16);
            }
            _ => unreachable!(),
        }
    }

    /// Returns the number of bytes per control word
    pub fn bytes_per_word(&self) -> usize {
        match self {
            Self::BOTH8(..) => 1,
            Self::BOTH16(..) => 2,
            Self::BOTH32(..) => 4,
            Self::REP8 => 1,
            Self::REP16 => 2,
            Self::REP32 => 4,
            Self::DEF8 => 1,
            Self::DEF16 => 2,
            Self::DEF32 => 4,
            Self::NIL => 0,
        }
    }

    /// Appends the next control word to the rep & def buffers
    ///
    /// `src` should be pointing at the first byte (little endian) of the control word
    ///
    /// `dst_rep` and `dst_def` are the buffers to append the rep and def levels to.
    /// They will not be appended to if not needed.
    pub fn parse(&self, src: &[u8], dst_rep: &mut Vec<u16>, dst_def: &mut Vec<u16>) {
        match self {
            Self::BOTH8(bits_to_shift, mask_to_apply) => {
                Self::parse_both::<1>(src, dst_rep, dst_def, *bits_to_shift, *mask_to_apply)
            }
            Self::BOTH16(bits_to_shift, mask_to_apply) => {
                Self::parse_both::<2>(src, dst_rep, dst_def, *bits_to_shift, *mask_to_apply)
            }
            Self::BOTH32(bits_to_shift, mask_to_apply) => {
                Self::parse_both::<4>(src, dst_rep, dst_def, *bits_to_shift, *mask_to_apply)
            }
            Self::REP8 => Self::parse_one::<1>(src, dst_rep),
            Self::REP16 => Self::parse_one::<2>(src, dst_rep),
            Self::REP32 => Self::parse_one::<4>(src, dst_rep),
            Self::DEF8 => Self::parse_one::<1>(src, dst_def),
            Self::DEF16 => Self::parse_one::<2>(src, dst_def),
            Self::DEF32 => Self::parse_one::<4>(src, dst_def),
            Self::NIL => {}
        }
    }

    /// Creates a new parser from the number of bits used for the repetition and definition levels
    pub fn new(bits_rep: u8, bits_def: u8) -> Self {
        let total_bits = bits_rep + bits_def;

        enum WordSize {
            One,
            Two,
            Four,
        }

        let word_size = if total_bits <= 8 {
            WordSize::One
        } else if total_bits <= 16 {
            WordSize::Two
        } else {
            WordSize::Four
        };

        match (bits_rep > 0, bits_def > 0, word_size) {
            (false, false, _) => Self::NIL,
            (false, true, WordSize::One) => Self::DEF8,
            (false, true, WordSize::Two) => Self::DEF16,
            (false, true, WordSize::Four) => Self::DEF32,
            (true, false, WordSize::One) => Self::REP8,
            (true, false, WordSize::Two) => Self::REP16,
            (true, false, WordSize::Four) => Self::REP32,
            (true, true, WordSize::One) => Self::BOTH8(bits_def, get_mask(bits_def as u16) as u32),
            (true, true, WordSize::Two) => Self::BOTH16(bits_def, get_mask(bits_def as u16) as u32),
            (true, true, WordSize::Four) => {
                Self::BOTH32(bits_def, get_mask(bits_def as u16) as u32)
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use arrow_buffer::{NullBuffer, OffsetBuffer, ScalarBuffer};

    use crate::repdef::RepDefUnraveler;

    use super::RepDefBuilder;

    fn validity(values: &[bool]) -> NullBuffer {
        NullBuffer::from_iter(values.iter().copied())
    }

    fn offsets_32(values: &[i32]) -> OffsetBuffer<i32> {
        OffsetBuffer::<i32>::new(ScalarBuffer::from_iter(values.iter().copied()))
    }

    fn offsets_64(values: &[i64]) -> OffsetBuffer<i64> {
        OffsetBuffer::<i64>::new(ScalarBuffer::from_iter(values.iter().copied()))
    }

    #[test]
    fn test_repdef() {
        // Basic case, rep & def
        let mut builder = RepDefBuilder::default();
        builder.add_validity_bitmap(validity(&[true, false, true]));
        builder.add_offsets(offsets_64(&[0, 2, 3, 5]));
        builder.add_validity_bitmap(validity(&[true, true, true, false, true]));
        builder.add_offsets(offsets_64(&[0, 1, 3, 5, 7, 9]));
        builder.add_validity_bitmap(validity(&[
            true, true, true, false, false, false, true, true, false,
        ]));

        let repdefs = RepDefBuilder::serialize(vec![builder]);
        let rep = repdefs.repetition_levels.unwrap();
        let def = repdefs.definition_levels.unwrap();

        assert_eq!(vec![0, 0, 0, 3, 3, 2, 2, 0, 1], def);
        assert_eq!(vec![2, 1, 0, 2, 0, 2, 0, 1, 0], rep);

        let mut unraveler = RepDefUnraveler::new(Some(rep), Some(def));

        // Note: validity doesn't exactly round-trip because repdef normalizes some of the
        // redundant validity values
        assert_eq!(
            unraveler.unravel_validity(),
            Some(validity(&[
                true, true, true, false, false, false, false, true, false
            ]))
        );
        assert_eq!(
            unraveler.unravel_offsets::<i32>().unwrap().inner(),
            offsets_32(&[0, 1, 3, 5, 7, 9]).inner()
        );
        assert_eq!(
            unraveler.unravel_validity(),
            Some(validity(&[true, true, false, false, true]))
        );
        assert_eq!(
            unraveler.unravel_offsets::<i32>().unwrap().inner(),
            offsets_32(&[0, 2, 3, 5]).inner()
        );
        assert_eq!(
            unraveler.unravel_validity(),
            Some(validity(&[true, false, true]))
        );
    }

    #[test]
    fn test_repdef_all_valid() {
        let mut builder = RepDefBuilder::default();
        builder.add_no_null(3);
        builder.add_offsets(offsets_64(&[0, 2, 3, 5]));
        builder.add_no_null(5);
        builder.add_offsets(offsets_64(&[0, 1, 3, 5, 7, 9]));
        builder.add_no_null(9);

        let repdefs = RepDefBuilder::serialize(vec![builder]);
        let rep = repdefs.repetition_levels.unwrap();
        assert!(repdefs.definition_levels.is_none());

        assert_eq!(vec![2, 1, 0, 2, 0, 2, 0, 1, 0], rep);

        let mut unraveler = RepDefUnraveler::new(Some(rep), None);

        assert_eq!(unraveler.unravel_validity(), None);
        assert_eq!(
            unraveler.unravel_offsets::<i32>().unwrap().inner(),
            offsets_32(&[0, 1, 3, 5, 7, 9]).inner()
        );
        assert_eq!(unraveler.unravel_validity(), None);
        assert_eq!(
            unraveler.unravel_offsets::<i32>().unwrap().inner(),
            offsets_32(&[0, 2, 3, 5]).inner()
        );
        assert_eq!(unraveler.unravel_validity(), None);
    }

    #[test]
    fn test_repdef_no_rep() {
        let mut builder = RepDefBuilder::default();
        builder.add_no_null(3);
        builder.add_validity_bitmap(validity(&[false, false, true, true, true]));
        builder.add_validity_bitmap(validity(&[false, true, true, true, false]));

        let repdefs = RepDefBuilder::serialize(vec![builder]);
        assert!(repdefs.repetition_levels.is_none());
        let def = repdefs.definition_levels.unwrap();

        assert_eq!(vec![2, 2, 0, 0, 1], def);

        let mut unraveler = RepDefUnraveler::new(None, Some(def));

        assert_eq!(
            unraveler.unravel_validity(),
            Some(validity(&[false, false, true, true, false]))
        );
        assert_eq!(
            unraveler.unravel_validity(),
            Some(validity(&[false, false, true, true, true]))
        );
        assert_eq!(unraveler.unravel_validity(), None);
    }

    #[test]
    fn test_repdef_multiple_builders() {
        // Basic case, rep & def
        let mut builder1 = RepDefBuilder::default();
        builder1.add_validity_bitmap(validity(&[true]));
        builder1.add_offsets(offsets_64(&[0, 2]));
        builder1.add_validity_bitmap(validity(&[true, true]));
        builder1.add_offsets(offsets_64(&[0, 1, 3]));
        builder1.add_validity_bitmap(validity(&[true, true, true]));

        let mut builder2 = RepDefBuilder::default();
        builder2.add_validity_bitmap(validity(&[false, true]));
        builder2.add_offsets(offsets_64(&[0, 1, 3]));
        builder2.add_validity_bitmap(validity(&[true, false, true]));
        builder2.add_offsets(offsets_64(&[0, 2, 4, 6]));
        builder2.add_validity_bitmap(validity(&[false, false, false, true, true, false]));

        let repdefs = RepDefBuilder::serialize(vec![builder1, builder2]);
        let rep = repdefs.repetition_levels.unwrap();
        let def = repdefs.definition_levels.unwrap();

        assert_eq!(vec![2, 1, 0, 2, 0, 2, 0, 1, 0], rep);
        assert_eq!(vec![0, 0, 0, 3, 3, 2, 2, 0, 1], def);
    }

    #[test]
    fn test_control_words() {
        // Convert to control words, verify expected, convert back, verify same as original
        fn check(
            rep: Vec<u16>,
            def: Vec<u16>,
            expected_values: Vec<u8>,
            expected_bytes_per_word: usize,
            expected_bits_rep: u8,
            expected_bits_def: u8,
        ) {
            let num_vals = rep.len().max(def.len());
            let max_rep = rep.iter().max().copied().unwrap_or(0);
            let max_def = def.iter().max().copied().unwrap_or(0);

            let in_rep = if rep.is_empty() {
                None
            } else {
                Some(rep.clone())
            };
            let in_def = if def.is_empty() {
                None
            } else {
                Some(def.clone())
            };

            let mut iter = super::build_control_word_iterator(in_rep, max_rep, in_def, max_def);
            assert_eq!(iter.bytes_per_word(), expected_bytes_per_word);
            assert_eq!(iter.bits_rep(), expected_bits_rep);
            assert_eq!(iter.bits_def(), expected_bits_def);
            let mut cw_vec = Vec::with_capacity(num_vals * iter.bytes_per_word());

            for _ in 0..num_vals {
                iter.append_next(&mut cw_vec);
            }

            assert_eq!(expected_values, cw_vec);

            let parser = super::ControlWordParser::new(expected_bits_rep, expected_bits_def);

            let mut rep_out = Vec::with_capacity(num_vals);
            let mut def_out = Vec::with_capacity(num_vals);

            if expected_bytes_per_word > 0 {
                for slice in cw_vec.chunks_exact(expected_bytes_per_word) {
                    parser.parse(slice, &mut rep_out, &mut def_out);
                }
            }

            assert_eq!(rep, rep_out);
            assert_eq!(def, def_out);
        }

        // Each will need 4 bits and so we should get 1-byte control words
        let rep = vec![0_u16, 7, 3, 2, 9, 8, 12, 5];
        let def = vec![5_u16, 3, 1, 2, 12, 15, 0, 2];
        let expected = vec![
            0b00000101, // 0, 5
            0b01110011, // 7, 3
            0b00110001, // 3, 1
            0b00100010, // 2, 2
            0b10011100, // 9, 12
            0b10001111, // 8, 15
            0b11000000, // 12, 0
            0b01010010, // 5, 2
        ];
        check(rep, def, expected, 1, 4, 4);

        // Now we need 5 bits for def so we get 2-byte control words
        let rep = vec![0_u16, 7, 3, 2, 9, 8, 12, 5];
        let def = vec![5_u16, 3, 1, 2, 12, 22, 0, 2];
        let expected = vec![
            0b00000101, 0b00000000, // 0, 5
            0b11100011, 0b00000000, // 7, 3
            0b01100001, 0b00000000, // 3, 1
            0b01000010, 0b00000000, // 2, 2
            0b00101100, 0b00000001, // 9, 12
            0b00010110, 0b00000001, // 8, 22
            0b10000000, 0b00000001, // 12, 0
            0b10100010, 0b00000000, // 5, 2
        ];
        check(rep, def, expected, 2, 4, 5);

        // Just rep, 4 bits so 1 byte each
        let levels = vec![0_u16, 7, 3, 2, 9, 8, 12, 5];
        let expected = vec![
            0b00000000, // 0
            0b00000111, // 7
            0b00000011, // 3
            0b00000010, // 2
            0b00001001, // 9
            0b00001000, // 8
            0b00001100, // 12
            0b00000101, // 5
        ];
        check(levels.clone(), Vec::default(), expected.clone(), 1, 4, 0);

        // Just def
        check(Vec::default(), levels, expected, 1, 0, 4);

        // No rep, no def, no bytes
        check(Vec::default(), Vec::default(), Vec::default(), 0, 0, 0);
    }
}