lance_encoding/repdef.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors
//! Utilities for rep-def levels
//!
//! Repetition and definition levels are a way to encode multipile validity / offsets arrays
//! into a single buffer. They are a form of "zipping" buffers together that takes advantage
//! of the fact that, if the outermost array is invalid, then the validity of the inner items
//! is irrelevant.
//!
//! Note: the concept of repetition & definition levels comes from the Dremel paper and has
//! been implemented in Apache Parquet. However, the implementation here is not necessarily
//! compatible with Parquet. For example, we use 0 to represent the "inner-most" item and
//! Parquet uses 0 to represent the "outer-most" item.
//!
//! # Repetition Levels
//!
//! With repetition levels we convert a sparse array of offsets into a dense array of levels.
//! These levels are marked non-zero whenever a new list begins. In other words, given the
//! list array with 3 rows [{<0,1>, <>, <2>}, {<3>}, {}], [], [{<4>}] we would have three
//! offsets arrays:
//!
//! Outer-most ([]): [0, 3, 3, 4]
//! Middle ({}): [0, 3, 4, 4, 5]
//! Inner (<>): [0, 2, 2, 3, 4, 5]
//! Values : [0, 1, 2, 3, 4]
//!
//! We can convert these into repetition levels as follows:
//!
//! | Values | Repetition |
//! | ------ | ---------- |
//! | 0 | 3 | // Start of outer-most list
//! | 1 | 0 | // Continues inner-most list (no new lists)
//! | - | 1 | // Start of new inner-most list (empty list)
//! | 2 | 1 | // Start of new inner-most list
//! | 3 | 2 | // Start of new middle list
//! | - | 2 | // Start of new inner-most list (empty list)
//! | - | 3 | // Start of new outer-most list (empty list)
//! | 4 | 0 | // Start of new outer-most list
//!
//! Note: We actually have MORE repetition levels than values. This is because the repetition
//! levels need to be able to represent empty lists.
//!
//! # Definition Levels
//!
//! Definition levels are simpler. We can think of them as zipping together various validity (from
//! different levels of nesting) into a single buffer. For example, we could zip the arrays
//! [1, 1, 0, 0] and [1, 0, 1, 0] into [11, 10, 01, 00]. However, 00 and 01 are redundant. If the
//! outer level is null then the validity of the inner levels is irrelevant. To save space we instead
//! encode a "level" which is the "depth" of the null. Let's look at a more complete example:
//!
//! Array: [{"middle": {"inner": 1]}}, NULL, {"middle": NULL}, {"middle": {"inner": NULL}}]
//!
//! In Arrow we would have the following validity arrays:
//! Outer validity : 1, 0, 1, 1
//! Middle validity: 1, ?, 0, 1
//! Inner validity : 1, ?, ?, 0
//! Values : 1, ?, ?, ?
//!
//! The ? values are undefined in the Arrow format. We can convert these into definition levels as follows:
//!
//! | Values | Definition |
//! | ------ | ---------- |
//! | 1 | 0 | // Valid at all levels
//! | - | 3 | // Null at outer level
//! | - | 2 | // Null at middle level
//! | - | 1 | // Null at inner level
//!
//! # Compression
//!
//! Note that we only need 2 bits of definition levels to represent 3 levels of nesting. Definition
//! levels are always more compact than the input validity arrays.
//!
//! Repetition levels are more complex. If there are very large lists then a sparse array of offsets
//! (which has one element per list) might be more compact than a dense array of repetition levels
//! (which has one element per list value, possibly even more if there are empty lists).
//!
//! However, both repetition levels and definition levels are typically very compressible with RLE.
//!
//! However, in Lance we don't always take advantage of that compression because we want to be able
//! to zip rep-def levels together with our values. This gives us fewer IOPS when accessing row values.
// TODO: Right now, if a layer has no nulls, but other layers do, then we still use
// up a repetition layer for the no-null spot. For example, if we have four
// levels of rep: [has nulls, has nulls, no nulls, has nulls] then we will say:
// 0 = valid
// 1 = layer 4 null
// 2 = layer 3 null
// 3 = layer 2 null (useless)
// 4 = layer 1 null
//
// This means we end up with 3 bits per level instead of 2. We could instead record
// the layers that are all null somewhere else and not require wider rep levels.
use std::{
iter::{Copied, Zip},
sync::Arc,
};
use arrow_array::OffsetSizeTrait;
use arrow_buffer::{
ArrowNativeType, BooleanBuffer, BooleanBufferBuilder, NullBuffer, OffsetBuffer, ScalarBuffer,
};
use lance_core::{utils::bit::log_2_ceil, Error, Result};
use snafu::{location, Location};
use crate::buffer::LanceBuffer;
// We assume 16 bits is good enough for rep-def levels. This gives us
// 65536 levels of struct nesting and list nesting.
pub type LevelBuffer = Vec<u16>;
/// Represents information that we extract from a list array as we are
/// encoding
#[derive(Clone, Debug)]
struct OffsetDesc {
offsets: Arc<[i64]>,
specials: Arc<[SpecialOffset]>,
validity: Option<BooleanBuffer>,
has_empty_lists: bool,
num_values: usize,
}
/// Represents validity information that we extract from non-list arrays (that
/// have nulls) as we are encoding
#[derive(Clone, Debug)]
struct ValidityDesc {
validity: Option<BooleanBuffer>,
num_values: usize,
}
// As we build up rep/def from arrow arrays we record a
// series of RawRepDef objects. Each one corresponds to layer
// in the array structure
#[derive(Clone, Debug)]
enum RawRepDef {
Offsets(OffsetDesc),
Validity(ValidityDesc),
}
impl RawRepDef {
// Are there any nulls in this layer
fn has_nulls(&self) -> bool {
match self {
Self::Offsets(OffsetDesc { validity, .. }) => validity.is_some(),
Self::Validity(ValidityDesc { validity, .. }) => validity.is_some(),
}
}
// How many values are in this layer
fn num_values(&self) -> usize {
match self {
Self::Offsets(OffsetDesc { num_values, .. }) => *num_values,
Self::Validity(ValidityDesc { num_values, .. }) => *num_values,
}
}
}
/// Represents repetition and definition levels that have been
/// serialized into a pair of (optional) level buffers
#[derive(Debug)]
pub struct SerializedRepDefs {
/// The repetition levels, one per item
///
/// If None, there are no lists
pub repetition_levels: Option<Arc<[u16]>>,
/// The definition levels, one per item
///
/// If None, there are no nulls
pub definition_levels: Option<Arc<[u16]>>,
/// Special records indicate empty / null lists
///
/// These do not have any mapping to items. There may be empty or there may
/// be more special records than items or anywhere in between.
pub special_records: Vec<SpecialRecord>,
/// The meaning of each definition level
pub def_meaning: Vec<DefinitionInterpretation>,
/// The maximum level that is "visible" from the lowest level
///
/// This is the last level before we encounter a list level of some kind. Once we've
/// hit a list level then nulls in any level beyond do not map to actual items.
///
/// This is None if there are no lists
pub max_visible_level: Option<u16>,
}
impl SerializedRepDefs {
pub fn new(
repetition_levels: Option<LevelBuffer>,
definition_levels: Option<LevelBuffer>,
special_records: Vec<SpecialRecord>,
def_meaning: Vec<DefinitionInterpretation>,
) -> Self {
let first_list = def_meaning.iter().position(|level| level.is_list());
let max_visible_level = first_list.map(|first_list| {
def_meaning
.iter()
.map(|level| level.num_def_levels())
.take(first_list)
.sum::<u16>()
});
Self {
repetition_levels: repetition_levels.map(Arc::from),
definition_levels: definition_levels.map(Arc::from),
special_records,
def_meaning,
max_visible_level,
}
}
/// Creates an empty SerializedRepDefs (no repetition, all valid)
pub fn empty(def_meaning: Vec<DefinitionInterpretation>) -> Self {
Self {
repetition_levels: None,
definition_levels: None,
special_records: Vec::new(),
def_meaning,
max_visible_level: None,
}
}
pub fn rep_slicer(&self) -> Option<RepDefSlicer> {
self.repetition_levels
.as_ref()
.map(|rep| RepDefSlicer::new(self, rep.clone()))
}
pub fn def_slicer(&self) -> Option<RepDefSlicer> {
self.definition_levels
.as_ref()
.map(|def| RepDefSlicer::new(self, def.clone()))
}
/// Creates a version of the SerializedRepDefs with the specials collapsed into
/// the repetition and definition levels
pub fn collapse_specials(self) -> Self {
if self.special_records.is_empty() {
return self;
}
// If we have specials then we must have repetition
let rep = self.repetition_levels.unwrap();
let new_len = rep.len() + self.special_records.len();
let mut new_rep = Vec::with_capacity(new_len);
let mut new_def = Vec::with_capacity(new_len);
// Now we just merge the rep/def levels and the specials into one list. There is just
// one tricky part. If a non-special is added after a special item then it swaps its
// repetition level with the special item.
if let Some(def) = self.definition_levels {
let mut def_itr = def.iter();
let mut rep_itr = rep.iter();
let mut special_itr = self.special_records.into_iter().peekable();
let mut last_special = None;
for idx in 0..new_len {
if let Some(special) = special_itr.peek() {
if special.pos == idx {
new_rep.push(special.rep_level);
new_def.push(special.def_level);
special_itr.next();
last_special = Some(new_rep.last_mut().unwrap());
} else {
let rep = if let Some(last_special) = last_special {
let rep = *last_special;
*last_special = *rep_itr.next().unwrap();
rep
} else {
*rep_itr.next().unwrap()
};
new_rep.push(rep);
new_def.push(*def_itr.next().unwrap());
last_special = None;
}
} else {
let rep = if let Some(last_special) = last_special {
let rep = *last_special;
*last_special = *rep_itr.next().unwrap();
rep
} else {
*rep_itr.next().unwrap()
};
new_rep.push(rep);
new_def.push(*def_itr.next().unwrap());
last_special = None;
}
}
} else {
let mut rep_itr = rep.iter();
let mut special_itr = self.special_records.into_iter().peekable();
let mut last_special = None;
for idx in 0..new_len {
if let Some(special) = special_itr.peek() {
if special.pos == idx {
new_rep.push(special.rep_level);
new_def.push(special.def_level);
special_itr.next();
last_special = Some(new_rep.last_mut().unwrap());
} else {
let rep = if let Some(last_special) = last_special {
let rep = *last_special;
*last_special = *rep_itr.next().unwrap();
rep
} else {
*rep_itr.next().unwrap()
};
new_rep.push(rep);
new_def.push(0);
last_special = None;
}
} else {
let rep = if let Some(last_special) = last_special {
let rep = *last_special;
*last_special = *rep_itr.next().unwrap();
rep
} else {
*rep_itr.next().unwrap()
};
new_rep.push(rep);
new_def.push(0);
last_special = None;
}
}
}
Self {
repetition_levels: Some(new_rep.into()),
definition_levels: Some(new_def.into()),
special_records: Vec::new(),
def_meaning: self.def_meaning,
max_visible_level: self.max_visible_level,
}
}
}
/// Slices a level buffer into pieces
///
/// This is needed to handle the fact that a level buffer may have more
/// levels than values due to special (empty/null) lists.
///
/// As a result, a call to `slice_next(10)` may return 10 levels or it may
/// return more than 10 levels if any special values are encountered.
#[derive(Debug)]
pub struct RepDefSlicer<'a> {
repdef: &'a SerializedRepDefs,
to_slice: LanceBuffer,
current: usize,
}
// TODO: All of this logic will need some changing when we compress rep/def levels.
impl<'a> RepDefSlicer<'a> {
fn new(repdef: &'a SerializedRepDefs, levels: Arc<[u16]>) -> Self {
Self {
repdef,
to_slice: LanceBuffer::reinterpret_slice(levels),
current: 0,
}
}
pub fn num_levels(&self) -> usize {
self.to_slice.len() / 2
}
pub fn num_levels_remaining(&self) -> usize {
self.num_levels() - self.current
}
pub fn all_levels(&self) -> &LanceBuffer {
&self.to_slice
}
/// Returns the rest of the levels not yet sliced
///
/// This must be called instead of `slice_next` on the final iteration.
/// This is because anytime we slice there may be empty/null lists on the
/// boundary that are "free" and the current behavior in `slice_next` is to
/// leave them for the next call.
///
/// `slice_rest` will slice all remaining levels and return them.
pub fn slice_rest(&mut self) -> LanceBuffer {
let start = self.current;
let remaining = self.num_levels_remaining();
self.current = self.num_levels();
self.to_slice.slice_with_length(start * 2, remaining * 2)
}
/// Returns enough levels to satisfy the next `num_values` values
pub fn slice_next(&mut self, num_values: usize) -> LanceBuffer {
let start = self.current;
let Some(max_visible_level) = self.repdef.max_visible_level else {
// No lists, should be 1:1 mapping from levels to values
self.current = start + num_values;
return self.to_slice.slice_with_length(start * 2, num_values * 2);
};
if let Some(def) = self.repdef.definition_levels.as_ref() {
// There are lists and there are def levels. That means there may be
// more rep/def levels than values. We need to scan the def levels to figure
// out which items are "invisible" and skip over them
let mut def_itr = def[start..].iter();
let mut num_taken = 0;
let mut num_passed = 0;
while num_taken < num_values {
let def_level = *def_itr.next().unwrap();
if def_level <= max_visible_level {
num_taken += 1;
}
num_passed += 1;
}
self.current = start + num_passed;
self.to_slice.slice_with_length(start * 2, num_passed * 2)
} else {
// No def levels, should be 1:1 mapping from levels to values
self.current = start + num_values;
self.to_slice.slice_with_length(start * 2, num_values * 2)
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct SpecialRecord {
/// The position of the special record in the items array
///
/// Note that this is the position in the "expanded" items array (including the specials)
///
/// For example, if we have five items [I0, I1, ..., I4] and two specials [S0(pos=3), S1(pos=6)] then
/// the combined array is [I0, I1, I2, S0, I3, I4, S1].
///
/// Another tricky fact is that a special "swaps" the repetition level of the matching item when it is
/// being inserted into the combined list. So, if items are [I0(rep=2), I1(rep=1), I2(rep=2), I3(rep=0)]
/// and a special is S0(pos=2, rep=1) then the combined list is
/// [I0(rep=2), I1(rep=1), S0(rep=2), I2(rep=1), I3(rep=0)].
///
/// Or, to put it in practice we start with [[I0], [I1]], [[I2, I3]] and after inserting our special
/// we have [[I0], [I1]], [S0, [I2, I3]]
pos: usize,
/// The definition level of the special record. This is never 0 and is used to distinguish between an
/// empty list and a null list.
def_level: u16,
/// The repetition level of the special record. This is never 0 and is used to indicate which level of
/// nesting the special record is at.
rep_level: u16,
}
/// This tells us how an array handles definition. Given a stack of
/// these and a nested array and a set of definition levels we can calculate
/// how we should interpret the definition levels.
///
/// For example, if the interpretation is [AllValidItem, NullableItem] then
/// a 0 means "valid item" and a 1 means "null struct". If the interpretation
/// is [NullableItem, NullableItem] then a 0 means "valid item" and a 1 means
/// "null item" and a 2 means "null struct".
///
/// Lists are tricky because we might use up to two definition levels for a
/// single layer of list nesting because we need one value to indicate "empty list"
/// and another value to indicate "null list".
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum DefinitionInterpretation {
AllValidItem,
AllValidList,
NullableItem,
NullableList,
EmptyableList,
NullableAndEmptyableList,
}
impl DefinitionInterpretation {
/// How many definition levels do we need for this layer
pub fn num_def_levels(&self) -> u16 {
match self {
Self::AllValidItem => 0,
Self::AllValidList => 0,
Self::NullableItem => 1,
Self::NullableList => 1,
Self::EmptyableList => 1,
Self::NullableAndEmptyableList => 2,
}
}
/// Does this layer have nulls?
pub fn is_all_valid(&self) -> bool {
matches!(
self,
Self::AllValidItem | Self::AllValidList | Self::EmptyableList
)
}
/// Does this layer represent a list?
pub fn is_list(&self) -> bool {
matches!(
self,
Self::AllValidList
| Self::NullableList
| Self::EmptyableList
| Self::NullableAndEmptyableList
)
}
}
/// The RepDefBuilder is used to collect offsets & validity buffers
/// from arrow structures. Once we have those we use the SerializerContext
/// to build the actual repetition and definition levels by walking through
/// the arrow constructs in reverse order.
///
/// The algorithm for definition levels is pretty simple
///
/// Given:
/// - a validity buffer of [T, F, F, T, T]
/// - a current def level of 5
/// - a current definitions of [0, 1, 3, 3, 0]
///
/// We walk through the definitions and replace them with
/// the current level whenever a value is invalid. Thus
/// our output is: [0, 5, 5, 3, 0]
///
/// The algorithm for repetition levels is more complex.
///
/// The first time we see an offsets buffer we initialize the
/// rep levels to have a value of 1 whenever a list starts and 0
/// otherwise.
///
/// So, given offsets of [0, 3, 5] and no repetition we create
/// rep levels [1 0 0 1 0]
///
/// However, we also record the offsets into our current rep and
/// def levels and all operations happen in context of those offsets.
///
/// For example, continuing the above scenario we might then see validity
/// of [T, F]. This is strange since our validity bitmap has 2 items but
/// we would have 5 definition levels. We can use our current offsets
/// ([0, 3, 5]) to expand [T, F] into [T, T, T, F, F].
struct SerializerContext {
last_offsets: Option<Vec<usize>>,
last_offsets_full: Option<Vec<usize>>,
specials: Vec<SpecialRecord>,
def_meaning: Vec<DefinitionInterpretation>,
rep_levels: LevelBuffer,
def_levels: LevelBuffer,
current_rep: u16,
current_def: u16,
has_nulls: bool,
}
impl SerializerContext {
fn new(len: usize, has_nulls: bool, has_offsets: bool, num_layers: usize) -> Self {
let def_meaning = Vec::with_capacity(num_layers);
Self {
last_offsets: None,
last_offsets_full: None,
rep_levels: if has_offsets {
vec![0; len]
} else {
LevelBuffer::default()
},
def_levels: if has_nulls {
vec![0; len]
} else {
LevelBuffer::default()
},
def_meaning,
current_rep: 1,
current_def: 1,
has_nulls: false,
specials: Vec::default(),
}
}
fn checkout_def(&mut self, meaning: DefinitionInterpretation) -> u16 {
let def = self.current_def;
self.current_def += meaning.num_def_levels();
self.def_meaning.push(meaning);
def
}
fn record_offsets(&mut self, offset_desc: &OffsetDesc) {
let rep_level = self.current_rep;
let (null_list_level, empty_list_level) =
match (offset_desc.validity.is_some(), offset_desc.has_empty_lists) {
(true, true) => {
let level =
self.checkout_def(DefinitionInterpretation::NullableAndEmptyableList);
(level, level + 1)
}
(true, false) => (self.checkout_def(DefinitionInterpretation::NullableList), 0),
(false, true) => (
0,
self.checkout_def(DefinitionInterpretation::EmptyableList),
),
(false, false) => {
self.checkout_def(DefinitionInterpretation::AllValidList);
(0, 0)
}
};
self.current_rep += 1;
if let Some(last_offsets) = &self.last_offsets {
let last_offsets_full = self.last_offsets_full.as_ref().unwrap();
let mut new_last_off = Vec::with_capacity(offset_desc.offsets.len());
let mut new_last_off_full = Vec::with_capacity(offset_desc.offsets.len());
let mut empties_seen = 0;
for off in offset_desc.offsets.windows(2) {
let offset_ctx = last_offsets[off[0] as usize];
new_last_off.push(offset_ctx);
new_last_off_full.push(last_offsets_full[off[0] as usize] + empties_seen);
if off[0] == off[1] {
empties_seen += 1;
} else {
self.rep_levels[offset_ctx] = rep_level;
}
}
self.last_offsets = Some(new_last_off);
self.last_offsets_full = Some(new_last_off_full);
} else {
let mut new_last_off = Vec::with_capacity(offset_desc.offsets.len());
let mut new_last_off_full = Vec::with_capacity(offset_desc.offsets.len());
let mut empties_seen = 0;
for off in offset_desc.offsets.windows(2) {
new_last_off.push(off[0] as usize);
new_last_off_full.push(off[0] as usize + empties_seen);
if off[0] == off[1] {
empties_seen += 1;
} else {
self.rep_levels[off[0] as usize] = rep_level;
}
}
self.last_offsets = Some(new_last_off);
self.last_offsets_full = Some(new_last_off_full);
}
// Must update specials _after_ setting last_offsets_full
let last_offsets_full = self.last_offsets_full.as_ref().unwrap();
let num_combined_specials = self.specials.len() + offset_desc.specials.len();
let mut new_specials = Vec::with_capacity(num_combined_specials);
let mut new_inserted = 0;
let mut old_specials_itr = self.specials.iter().peekable();
let mut specials_itr = offset_desc.specials.iter().peekable();
for _ in 0..num_combined_specials {
if let Some(old_special) = old_specials_itr.peek() {
let old_special_pos = old_special.pos + new_inserted;
if let Some(new_special) = specials_itr.peek() {
let new_special_pos = last_offsets_full[new_special.pos()];
if old_special_pos < new_special_pos {
let mut old_special = *old_specials_itr.next().unwrap();
old_special.pos = old_special_pos;
new_specials.push(old_special);
} else {
let new_special = specials_itr.next().unwrap();
new_specials.push(SpecialRecord {
pos: new_special_pos,
def_level: if matches!(new_special, SpecialOffset::EmptyList(_)) {
empty_list_level
} else {
null_list_level
},
rep_level,
});
new_inserted += 1;
}
} else {
let mut old_special = *old_specials_itr.next().unwrap();
old_special.pos = old_special_pos;
new_specials.push(old_special);
}
} else {
let new_special = specials_itr.next().unwrap();
new_specials.push(SpecialRecord {
pos: last_offsets_full[new_special.pos()],
def_level: if matches!(new_special, SpecialOffset::EmptyList(_)) {
empty_list_level
} else {
null_list_level
},
rep_level,
});
new_inserted += 1;
}
}
self.specials = new_specials;
}
fn do_record_validity(&mut self, validity: &BooleanBuffer, null_level: u16) {
self.has_nulls = true;
assert!(!self.def_levels.is_empty());
if let Some(last_offsets) = &self.last_offsets {
last_offsets
.windows(2)
.zip(validity.iter())
.for_each(|(w, valid)| {
if !valid {
self.def_levels[w[0]..w[1]].fill(null_level);
}
});
} else {
self.def_levels
.iter_mut()
.zip(validity.iter())
.for_each(|(def, valid)| {
if !valid {
*def = null_level;
}
});
}
}
fn record_validity(&mut self, validity_desc: &ValidityDesc) {
if let Some(validity) = validity_desc.validity.as_ref() {
let def_level = self.checkout_def(DefinitionInterpretation::NullableItem);
self.do_record_validity(validity, def_level);
} else {
self.checkout_def(DefinitionInterpretation::AllValidItem);
}
}
fn build(self) -> SerializedRepDefs {
let definition_levels = if self.has_nulls {
Some(self.def_levels)
} else {
None
};
let repetition_levels = if self.current_rep > 1 {
Some(self.rep_levels)
} else {
None
};
SerializedRepDefs::new(
repetition_levels,
definition_levels,
self.specials,
self.def_meaning,
)
}
}
/// As we are encoding we record information about "specials" which are
/// empty lists or null lists.
#[derive(Debug, Copy, Clone)]
enum SpecialOffset {
NullList(usize),
EmptyList(usize),
}
impl SpecialOffset {
fn pos(&self) -> usize {
match self {
Self::NullList(pos) => *pos,
Self::EmptyList(pos) => *pos,
}
}
}
/// A structure used to collect validity buffers and offsets from arrow
/// arrays and eventually create repetition and definition levels
///
/// As we are encoding the structural encoders are given this struct and
/// will record the arrow information into it. Once we hit a leaf node we
/// serialize the data into rep/def levels and write these into the page.
#[derive(Clone, Default, Debug)]
pub struct RepDefBuilder {
// The rep/def info we have collected so far
repdefs: Vec<RawRepDef>,
// The current length, can get larger as we traverse lists (e.g. an
// array might have 5 lists which results in 50 items)
//
// Starts uninitialized until we see the first rep/def item
len: Option<usize>,
}
impl RepDefBuilder {
fn check_validity_len(&mut self, validity: &NullBuffer) {
if let Some(len) = self.len {
assert!(validity.len() == len);
}
self.len = Some(validity.len());
}
fn num_layers(&self) -> usize {
self.repdefs.len()
}
/// The builder is "empty" if there is no repetition and no nulls. In this case we don't need
/// to store anything to disk (except the description)
fn is_empty(&self) -> bool {
self.repdefs
.iter()
.all(|r| matches!(r, RawRepDef::Validity(ValidityDesc { validity: None, .. })))
}
/// Returns true if there is only a single layer of definition
pub fn is_simple_validity(&self) -> bool {
self.repdefs.len() == 1 && matches!(self.repdefs[0], RawRepDef::Validity(_))
}
/// Return True if any layer has a validity bitmap
///
/// Return False if all layers are non-null (the def levels can
/// be skipped in this case)
pub fn has_nulls(&self) -> bool {
self.repdefs.iter().any(|rd| {
matches!(
rd,
RawRepDef::Validity(ValidityDesc {
validity: Some(_),
..
})
)
})
}
pub fn has_offsets(&self) -> bool {
self.repdefs
.iter()
.any(|rd| matches!(rd, RawRepDef::Offsets(OffsetDesc { .. })))
}
/// Registers a nullable validity bitmap
pub fn add_validity_bitmap(&mut self, validity: NullBuffer) {
self.check_validity_len(&validity);
self.repdefs.push(RawRepDef::Validity(ValidityDesc {
num_values: validity.len(),
validity: Some(validity.into_inner()),
}));
}
/// Registers an all-valid validity layer
pub fn add_no_null(&mut self, len: usize) {
self.repdefs.push(RawRepDef::Validity(ValidityDesc {
validity: None,
num_values: len,
}));
}
fn check_offset_len(&mut self, offsets: &[i64]) {
if let Some(len) = self.len {
assert!(offsets.len() == len + 1);
}
self.len = Some(offsets[offsets.len() - 1] as usize);
}
/// Adds a layer of offsets
///
/// Offsets are casted to a common type (i64) and also normalized. Null lists are
/// always represented by a zero-length (identical) pair of offsets and so the caller
/// should filter out any garbage items before encoding them. To assist with this the
/// method will return true if any non-empty null lists were found.
pub fn add_offsets<O: OffsetSizeTrait>(
&mut self,
offsets: OffsetBuffer<O>,
validity: Option<NullBuffer>,
) -> bool {
let mut has_garbage_values = false;
if O::IS_LARGE {
let inner = offsets.into_inner();
let len = inner.len();
let i64_buff = ScalarBuffer::<i64>::new(inner.into_inner(), 0, len);
let mut normalized = Vec::with_capacity(len);
normalized.push(0_i64);
let mut specials = Vec::new();
let mut has_empty_lists = false;
let mut last_off = 0;
if let Some(validity) = validity.as_ref() {
for (idx, (off, valid)) in i64_buff.windows(2).zip(validity.iter()).enumerate() {
let len: i64 = off[1] - off[0];
match (valid, len == 0) {
(false, is_empty) => {
specials.push(SpecialOffset::NullList(idx));
has_garbage_values |= !is_empty;
}
(true, true) => {
has_empty_lists = true;
specials.push(SpecialOffset::EmptyList(idx));
}
_ => {
last_off += len;
}
}
normalized.push(last_off);
}
} else {
for (idx, off) in i64_buff.windows(2).enumerate() {
let len: i64 = off[1] - off[0];
if len == 0 {
has_empty_lists = true;
specials.push(SpecialOffset::EmptyList(idx));
}
last_off += len;
normalized.push(last_off);
}
};
self.check_offset_len(&normalized);
self.repdefs.push(RawRepDef::Offsets(OffsetDesc {
num_values: normalized.len() - 1,
offsets: normalized.into(),
validity: validity.map(|v| v.into_inner()),
has_empty_lists,
specials: specials.into(),
}));
has_garbage_values
} else {
let inner = offsets.into_inner();
let len = inner.len();
let scalar_off = ScalarBuffer::<i32>::new(inner.into_inner(), 0, len);
let mut casted = Vec::with_capacity(len);
casted.push(0);
let mut has_empty_lists = false;
let mut specials = Vec::new();
let mut last_off: i64 = 0;
if let Some(validity) = validity.as_ref() {
for (idx, (off, valid)) in scalar_off.windows(2).zip(validity.iter()).enumerate() {
let len = (off[1] - off[0]) as i64;
match (valid, len == 0) {
(false, is_empty) => {
specials.push(SpecialOffset::NullList(idx));
has_garbage_values |= !is_empty;
}
(true, true) => {
has_empty_lists = true;
specials.push(SpecialOffset::EmptyList(idx));
}
_ => {
last_off += len;
}
}
casted.push(last_off);
}
} else {
for (idx, off) in scalar_off.windows(2).enumerate() {
let len = (off[1] - off[0]) as i64;
if len == 0 {
has_empty_lists = true;
specials.push(SpecialOffset::EmptyList(idx));
}
last_off += len;
casted.push(last_off);
}
};
self.check_offset_len(&casted);
self.repdefs.push(RawRepDef::Offsets(OffsetDesc {
num_values: casted.len() - 1,
offsets: casted.into(),
validity: validity.map(|v| v.into_inner()),
has_empty_lists,
specials: specials.into(),
}));
has_garbage_values
}
}
// When we are encoding data it arrives in batches. For each batch we create a RepDefBuilder and collect the
// various validity buffers and offset buffers from that batch. Once we have enough batches to write a page we
// need to take this collection of RepDefBuilders and concatenate them and then serialize them into rep/def levels.
//
// TODO: In the future, we may concatenate and serialize at the same time?
//
// This method takes care of the concatenation part. First we collect all of layer 0 from each builder, then we
// call this method. Then we collect all of layer 1 from each builder and call this method. And so on.
//
// That means this method should get a collection of `RawRepDef` where each item is the same kind (all validity or
// all offsets) though the nullability / lengths may be different in each layer.
fn concat_layers<'a>(
layers: impl Iterator<Item = &'a RawRepDef>,
num_layers: usize,
) -> RawRepDef {
// We make two passes through the layers. The first determines if we need to pay the cost of allocating
// buffers. The second pass actually adds the values.
let mut collected = Vec::with_capacity(num_layers);
let mut has_nulls = false;
let mut is_offsets = false;
let mut num_specials = 0;
let mut all_has_empty_lists = false;
let mut all_num_values = 0;
for layer in layers {
has_nulls |= layer.has_nulls();
if let RawRepDef::Offsets(OffsetDesc {
specials,
has_empty_lists,
..
}) = layer
{
all_has_empty_lists |= *has_empty_lists;
is_offsets = true;
num_specials += specials.len();
}
collected.push(layer);
all_num_values += layer.num_values();
}
// Shortcut if there are no nulls
if !has_nulls && !is_offsets {
return RawRepDef::Validity(ValidityDesc {
validity: None,
num_values: all_num_values,
});
}
// Only allocate if needed
let mut validity_builder = if has_nulls {
BooleanBufferBuilder::new(all_num_values)
} else {
BooleanBufferBuilder::new(0)
};
let mut all_offsets = if is_offsets {
let mut all_offsets = Vec::with_capacity(all_num_values);
all_offsets.push(0);
all_offsets
} else {
Vec::new()
};
let mut all_specials = Vec::with_capacity(num_specials);
for layer in collected {
match layer {
RawRepDef::Validity(ValidityDesc {
validity: Some(validity),
..
}) => {
validity_builder.append_buffer(validity);
}
RawRepDef::Validity(ValidityDesc {
validity: None,
num_values,
}) => {
validity_builder.append_n(*num_values, true);
}
RawRepDef::Offsets(OffsetDesc {
offsets,
validity: Some(validity),
has_empty_lists,
specials,
..
}) => {
all_has_empty_lists |= has_empty_lists;
validity_builder.append_buffer(validity);
let existing_lists = all_offsets.len() - 1;
let last = *all_offsets.last().unwrap();
all_offsets.extend(offsets.iter().skip(1).map(|off| *off + last));
all_specials.extend(specials.iter().map(|s| match s {
SpecialOffset::NullList(pos) => {
SpecialOffset::NullList(*pos + existing_lists)
}
SpecialOffset::EmptyList(pos) => {
SpecialOffset::EmptyList(*pos + existing_lists)
}
}));
}
RawRepDef::Offsets(OffsetDesc {
offsets,
validity: None,
has_empty_lists,
num_values,
specials,
}) => {
all_has_empty_lists |= has_empty_lists;
if has_nulls {
validity_builder.append_n(*num_values, true);
}
let last = *all_offsets.last().unwrap();
let existing_lists = all_offsets.len() - 1;
all_offsets.extend(offsets.iter().skip(1).map(|off| *off + last));
all_specials.extend(specials.iter().map(|s| match s {
SpecialOffset::NullList(pos) => {
SpecialOffset::NullList(*pos + existing_lists)
}
SpecialOffset::EmptyList(pos) => {
SpecialOffset::EmptyList(*pos + existing_lists)
}
}));
}
}
}
let validity = if has_nulls {
Some(validity_builder.finish())
} else {
None
};
if all_offsets.is_empty() {
RawRepDef::Validity(ValidityDesc {
validity,
num_values: all_num_values,
})
} else {
RawRepDef::Offsets(OffsetDesc {
offsets: all_offsets.into(),
validity,
has_empty_lists: all_has_empty_lists,
num_values: all_num_values,
specials: all_specials.into(),
})
}
}
/// Converts the validity / offsets buffers that have been gathered so far
/// into repetition and definition levels
pub fn serialize(builders: Vec<Self>) -> SerializedRepDefs {
assert!(!builders.is_empty());
if builders.iter().all(|b| b.is_empty()) {
// No repetition, all-valid
return SerializedRepDefs::empty(
builders
.first()
.unwrap()
.repdefs
.iter()
.map(|_| DefinitionInterpretation::AllValidItem)
.collect::<Vec<_>>(),
);
}
let has_nulls = builders.iter().any(|b| b.has_nulls());
let has_offsets = builders.iter().any(|b| b.has_offsets());
let total_len = builders.iter().map(|b| b.len.unwrap()).sum();
let num_layers = builders[0].num_layers();
let mut context = SerializerContext::new(total_len, has_nulls, has_offsets, num_layers);
let combined_layers = (0..num_layers)
.map(|layer_index| {
Self::concat_layers(
builders.iter().map(|b| &b.repdefs[layer_index]),
builders.len(),
)
})
.collect::<Vec<_>>();
debug_assert!(builders
.iter()
.all(|b| b.num_layers() == builders[0].num_layers()));
for layer in combined_layers.into_iter().rev() {
match layer {
RawRepDef::Validity(def) => {
context.record_validity(&def);
}
RawRepDef::Offsets(rep) => {
context.record_offsets(&rep);
}
}
}
context.build().collapse_specials()
}
}
/// Starts with serialized repetition and definition levels and unravels
/// them into validity buffers and offsets buffers
///
/// This is used during decoding to create the necessary arrow structures
#[derive(Debug)]
pub struct RepDefUnraveler {
rep_levels: Option<LevelBuffer>,
def_levels: Option<LevelBuffer>,
// Maps from definition level to the rep level at which that definition level is visible
levels_to_rep: Vec<u16>,
def_meaning: Arc<[DefinitionInterpretation]>,
// Current definition level to compare to.
current_def_cmp: u16,
// Current rep level, determines which specials we can see
current_rep_cmp: u16,
// Current layer index, 0 means inner-most layer and it counts up from there. Used to index
// into special_defs
current_layer: usize,
}
impl RepDefUnraveler {
/// Creates a new unraveler from serialized repetition and definition information
pub fn new(
rep_levels: Option<LevelBuffer>,
def_levels: Option<LevelBuffer>,
def_meaning: Arc<[DefinitionInterpretation]>,
) -> Self {
let mut levels_to_rep = Vec::with_capacity(def_meaning.len());
let mut rep_counter = 0;
// Level=0 is always visible and means valid item
levels_to_rep.push(0);
for meaning in def_meaning.as_ref() {
match meaning {
DefinitionInterpretation::AllValidItem | DefinitionInterpretation::AllValidList => {
// There is no corresponding level, so nothing to put in levels_to_rep
}
DefinitionInterpretation::NullableItem => {
// Some null structs are not visible at inner rep levels in cases like LIST<STRUCT<LIST<...>>>
levels_to_rep.push(rep_counter);
}
DefinitionInterpretation::NullableList => {
rep_counter += 1;
levels_to_rep.push(rep_counter);
}
DefinitionInterpretation::EmptyableList => {
rep_counter += 1;
levels_to_rep.push(rep_counter);
}
DefinitionInterpretation::NullableAndEmptyableList => {
rep_counter += 1;
levels_to_rep.push(rep_counter);
levels_to_rep.push(rep_counter);
}
}
}
Self {
rep_levels,
def_levels,
current_def_cmp: 0,
current_rep_cmp: 0,
levels_to_rep,
current_layer: 0,
def_meaning,
}
}
pub fn is_all_valid(&self) -> bool {
self.def_meaning[self.current_layer].is_all_valid()
}
/// If the current level is a repetition layer then this returns the number of lists
/// at this level.
///
/// This is not valid to call when the current level is a struct/primitive layer because
/// in some cases there may be no rep or def information to know this.
pub fn max_lists(&self) -> usize {
debug_assert!(
self.def_meaning[self.current_layer] != DefinitionInterpretation::NullableItem
);
self.rep_levels
.as_ref()
// Worst case every rep item is max_rep and a new list
.map(|levels| levels.len())
.unwrap_or(0)
}
/// Unravels a layer of offsets from the unraveler into the given offset width
///
/// When decoding a list the caller should first unravel the offsets and then
/// unravel the validity (this is the opposite order used during encoding)
pub fn unravel_offsets<T: ArrowNativeType>(
&mut self,
offsets: &mut Vec<T>,
validity: Option<&mut BooleanBufferBuilder>,
) -> Result<()> {
let rep_levels = self
.rep_levels
.as_mut()
.expect("Expected repetition level but data didn't contain repetition");
let valid_level = self.current_def_cmp;
let (null_level, empty_level) = match self.def_meaning[self.current_layer] {
DefinitionInterpretation::NullableList => {
self.current_def_cmp += 1;
(valid_level + 1, 0)
}
DefinitionInterpretation::EmptyableList => {
self.current_def_cmp += 1;
(0, valid_level + 1)
}
DefinitionInterpretation::NullableAndEmptyableList => {
self.current_def_cmp += 2;
(valid_level + 1, valid_level + 2)
}
DefinitionInterpretation::AllValidList => (0, 0),
_ => unreachable!(),
};
let max_level = null_level.max(empty_level);
self.current_layer += 1;
let mut curlen: usize = offsets.last().map(|o| o.as_usize()).unwrap_or(0);
// If offsets is empty this is a no-op. If offsets is not empty that means we already
// added a set of offsets. For example, we might have added [0, 3, 5] (2 lists). Now
// say we want to add [0, 1, 4] (2 lists). We should get [0, 3, 5, 6, 9] (4 lists). If
// we don't pop here we get [0, 3, 5, 5, 6, 9] which is wrong.
//
// Or, to think about it another way, if every unraveler adds the starting 0 and the trailing
// length then we have N + unravelers.len() values instead of N + 1.
offsets.pop();
let to_offset = |val: usize| {
T::from_usize(val)
.ok_or_else(|| Error::invalid_input("A single batch had more than i32::MAX values and so a large container type is required", location!()))
};
self.current_rep_cmp += 1;
if let Some(def_levels) = &mut self.def_levels {
assert!(rep_levels.len() == def_levels.len());
// It's possible validity is None even if we have def levels. For example, we might have
// empty lists (which require def levels) but no nulls.
let mut push_validity: Box<dyn FnMut(bool)> = if let Some(validity) = validity {
Box::new(|is_valid| validity.append(is_valid))
} else {
Box::new(|_| {})
};
// This is a strange access pattern. We are iterating over the rep/def levels and
// at the same time writing the rep/def levels. This means we need both a mutable
// and immutable reference to the rep/def levels.
let mut read_idx = 0;
let mut write_idx = 0;
while read_idx < rep_levels.len() {
// SAFETY: We assert that rep_levels and def_levels have the same
// len and read_idx and write_idx can never go past the end.
unsafe {
let rep_val = *rep_levels.get_unchecked(read_idx);
if rep_val != 0 {
let def_val = *def_levels.get_unchecked(read_idx);
// Copy over
*rep_levels.get_unchecked_mut(write_idx) = rep_val - 1;
*def_levels.get_unchecked_mut(write_idx) = def_val;
write_idx += 1;
if def_val == 0 {
// This is a valid list
offsets.push(to_offset(curlen)?);
curlen += 1;
push_validity(true);
} else if def_val > max_level {
// This is not visible at this rep level, do not add to offsets, but keep in repdef
} else if def_val == null_level {
// This is a null list
offsets.push(to_offset(curlen)?);
push_validity(false);
} else if def_val == empty_level {
// This is an empty list
offsets.push(to_offset(curlen)?);
push_validity(true);
} else {
// New valid list starting with null item
offsets.push(to_offset(curlen)?);
curlen += 1;
push_validity(true);
}
} else {
curlen += 1;
}
read_idx += 1;
}
}
offsets.push(to_offset(curlen)?);
rep_levels.truncate(write_idx);
def_levels.truncate(write_idx);
Ok(())
} else {
// SAFETY: See above loop
let mut read_idx = 0;
let mut write_idx = 0;
let old_offsets_len = offsets.len();
while read_idx < rep_levels.len() {
// SAFETY: read_idx / write_idx cannot go past rep_levels.len()
unsafe {
let rep_val = *rep_levels.get_unchecked(read_idx);
if rep_val != 0 {
// Finish the current list
offsets.push(to_offset(curlen)?);
*rep_levels.get_unchecked_mut(write_idx) = rep_val - 1;
write_idx += 1;
}
curlen += 1;
read_idx += 1;
}
}
let num_new_lists = offsets.len() - old_offsets_len;
offsets.push(to_offset(curlen)?);
rep_levels.truncate(offsets.len() - 1);
if let Some(validity) = validity {
// Even though we don't have validity it is possible another unraveler did and so we need
// to push all valids
validity.append_n(num_new_lists, true);
}
Ok(())
}
}
pub fn skip_validity(&mut self) {
debug_assert!(
self.def_meaning[self.current_layer] == DefinitionInterpretation::AllValidItem
);
self.current_layer += 1;
}
/// Unravels a layer of validity from the definition levels
pub fn unravel_validity(&mut self, validity: &mut BooleanBufferBuilder) {
debug_assert!(
self.def_meaning[self.current_layer] != DefinitionInterpretation::AllValidItem
);
self.current_layer += 1;
let def_levels = &self.def_levels.as_ref().unwrap();
let current_def_cmp = self.current_def_cmp;
self.current_def_cmp += 1;
for is_valid in def_levels.iter().filter_map(|&level| {
if self.levels_to_rep[level as usize] <= self.current_rep_cmp {
Some(level <= current_def_cmp)
} else {
None
}
}) {
validity.append(is_valid);
}
}
}
/// As we decode we may extract rep/def information from multiple pages (or multiple
/// chunks within a page).
///
/// For each chunk we create an unraveler. Each unraveler can have a completely different
/// interpretation (e.g. one page might contain null items but no null structs and the next
/// page might have null structs but no null items).
///
/// Concatenating these unravelers would be tricky and expensive so instead we have a
/// composite unraveler which unravels across multiple unravelers.
///
/// Note: this class should be used even if there is only one page / unraveler. This is
/// because the `RepDefUnraveler`'s API is more complex (it's meant to be called by this
/// class)
#[derive(Debug)]
pub struct CompositeRepDefUnraveler {
unravelers: Vec<RepDefUnraveler>,
}
impl CompositeRepDefUnraveler {
pub fn new(unravelers: Vec<RepDefUnraveler>) -> Self {
Self { unravelers }
}
/// Unravels a layer of validity
///
/// Returns None if there are no null items in this layer
pub fn unravel_validity(&mut self, num_values: usize) -> Option<NullBuffer> {
let is_all_valid = self
.unravelers
.iter()
.all(|unraveler| unraveler.is_all_valid());
if is_all_valid {
for unraveler in self.unravelers.iter_mut() {
unraveler.skip_validity();
}
None
} else {
let mut validity = BooleanBufferBuilder::new(num_values);
for unraveler in self.unravelers.iter_mut() {
unraveler.unravel_validity(&mut validity);
}
Some(NullBuffer::new(validity.finish()))
}
}
/// Unravels a layer of offsets (and the validity for that layer)
pub fn unravel_offsets<T: ArrowNativeType>(
&mut self,
) -> Result<(OffsetBuffer<T>, Option<NullBuffer>)> {
let mut is_all_valid = true;
let mut max_num_lists = 0;
for unraveler in self.unravelers.iter() {
is_all_valid &= unraveler.is_all_valid();
max_num_lists += unraveler.max_lists();
}
let mut validity = if is_all_valid {
None
} else {
// Note: This is probably an over-estimate and potentially even an under-estimate. We only know
// right now how many items we have and not how many rows. (TODO: Shouldn't we know the # of rows?)
Some(BooleanBufferBuilder::new(max_num_lists))
};
let mut offsets = Vec::with_capacity(max_num_lists + 1);
for unraveler in self.unravelers.iter_mut() {
unraveler.unravel_offsets(&mut offsets, validity.as_mut())?;
}
Ok((
OffsetBuffer::new(ScalarBuffer::from(offsets)),
validity.map(|mut v| NullBuffer::new(v.finish())),
))
}
}
/// A [`ControlWordIterator`] when there are both repetition and definition levels
///
/// The iterator will put the repetition level in the upper bits and the definition
/// level in the lower bits. The number of bits used for each level is determined
/// by the width of the repetition and definition levels.
#[derive(Debug)]
pub struct BinaryControlWordIterator<I: Iterator<Item = (u16, u16)>, W> {
repdef: I,
def_width: usize,
rep_mask: u16,
def_mask: u16,
bits_rep: u8,
bits_def: u8,
phantom: std::marker::PhantomData<W>,
}
impl<I: Iterator<Item = (u16, u16)>> BinaryControlWordIterator<I, u8> {
fn append_next(&mut self, buf: &mut Vec<u8>) {
let next = self.repdef.next().unwrap();
let control_word: u8 =
(((next.0 & self.rep_mask) as u8) << self.def_width) + ((next.1 & self.def_mask) as u8);
buf.push(control_word);
}
}
impl<I: Iterator<Item = (u16, u16)>> BinaryControlWordIterator<I, u16> {
fn append_next(&mut self, buf: &mut Vec<u8>) {
let next = self.repdef.next().unwrap();
let control_word: u16 =
((next.0 & self.rep_mask) << self.def_width) + (next.1 & self.def_mask);
let control_word = control_word.to_le_bytes();
buf.push(control_word[0]);
buf.push(control_word[1]);
}
}
impl<I: Iterator<Item = (u16, u16)>> BinaryControlWordIterator<I, u32> {
fn append_next(&mut self, buf: &mut Vec<u8>) {
let next = self.repdef.next().unwrap();
let control_word: u32 = (((next.0 & self.rep_mask) as u32) << self.def_width)
+ ((next.1 & self.def_mask) as u32);
let control_word = control_word.to_le_bytes();
buf.push(control_word[0]);
buf.push(control_word[1]);
buf.push(control_word[2]);
buf.push(control_word[3]);
}
}
/// A [`ControlWordIterator`] when there are only definition levels or only repetition levels
#[derive(Debug)]
pub struct UnaryControlWordIterator<I: Iterator<Item = u16>, W> {
repdef: I,
level_mask: u16,
bits_rep: u8,
bits_def: u8,
phantom: std::marker::PhantomData<W>,
}
impl<I: Iterator<Item = u16>> UnaryControlWordIterator<I, u8> {
fn append_next(&mut self, buf: &mut Vec<u8>) {
let next = self.repdef.next().unwrap();
buf.push((next & self.level_mask) as u8);
}
}
impl<I: Iterator<Item = u16>> UnaryControlWordIterator<I, u16> {
fn append_next(&mut self, buf: &mut Vec<u8>) {
let next = self.repdef.next().unwrap() & self.level_mask;
let control_word = next.to_le_bytes();
buf.push(control_word[0]);
buf.push(control_word[1]);
}
}
impl<I: Iterator<Item = u16>> UnaryControlWordIterator<I, u32> {
fn append_next(&mut self, buf: &mut Vec<u8>) {
let next = (self.repdef.next().unwrap() & self.level_mask) as u32;
let control_word = next.to_le_bytes();
buf.push(control_word[0]);
buf.push(control_word[1]);
buf.push(control_word[2]);
buf.push(control_word[3]);
}
}
/// A [`ControlWordIterator`] when there are no repetition or definition levels
#[derive(Debug)]
pub struct NilaryControlWordIterator;
/// Helper function to get a bit mask of the given width
fn get_mask(width: u16) -> u16 {
(1 << width) - 1
}
// We're really going out of our way to avoid boxing here but this will be called on a per-value basis
// so it is in the critical path.
type SpecificBinaryControlWordIterator<'a, T> = BinaryControlWordIterator<
Zip<Copied<std::slice::Iter<'a, u16>>, Copied<std::slice::Iter<'a, u16>>>,
T,
>;
/// An iterator that generates control words from repetition and definition levels
///
/// "Control word" is just a fancy term for a single u8/u16/u32 that contains both
/// the repetition and definition in it.
///
/// In the large majority of case we only need a single byte to represent both the
/// repetition and definition levels. However, if there is deep nesting then we may
/// need two bytes. In the worst case we need 4 bytes though this suggests hundreds of
/// levels of nesting which seems unlikely to encounter in practice.
#[derive(Debug)]
pub enum ControlWordIterator<'a> {
Binary8(SpecificBinaryControlWordIterator<'a, u8>),
Binary16(SpecificBinaryControlWordIterator<'a, u16>),
Binary32(SpecificBinaryControlWordIterator<'a, u32>),
Unary8(UnaryControlWordIterator<Copied<std::slice::Iter<'a, u16>>, u8>),
Unary16(UnaryControlWordIterator<Copied<std::slice::Iter<'a, u16>>, u16>),
Unary32(UnaryControlWordIterator<Copied<std::slice::Iter<'a, u16>>, u32>),
Nilary(NilaryControlWordIterator),
}
impl ControlWordIterator<'_> {
/// Appends the next control word to the buffer
pub fn append_next(&mut self, buf: &mut Vec<u8>) {
match self {
Self::Binary8(iter) => iter.append_next(buf),
Self::Binary16(iter) => iter.append_next(buf),
Self::Binary32(iter) => iter.append_next(buf),
Self::Unary8(iter) => iter.append_next(buf),
Self::Unary16(iter) => iter.append_next(buf),
Self::Unary32(iter) => iter.append_next(buf),
Self::Nilary(_) => {}
}
}
/// Returns the number of bytes per control word
pub fn bytes_per_word(&self) -> usize {
match self {
Self::Binary8(_) => 1,
Self::Binary16(_) => 2,
Self::Binary32(_) => 4,
Self::Unary8(_) => 1,
Self::Unary16(_) => 2,
Self::Unary32(_) => 4,
Self::Nilary(_) => 0,
}
}
/// Returns the number of bits used for the repetition level
pub fn bits_rep(&self) -> u8 {
match self {
Self::Binary8(iter) => iter.bits_rep,
Self::Binary16(iter) => iter.bits_rep,
Self::Binary32(iter) => iter.bits_rep,
Self::Unary8(iter) => iter.bits_rep,
Self::Unary16(iter) => iter.bits_rep,
Self::Unary32(iter) => iter.bits_rep,
Self::Nilary(_) => 0,
}
}
/// Returns the number of bits used for the definition level
pub fn bits_def(&self) -> u8 {
match self {
Self::Binary8(iter) => iter.bits_def,
Self::Binary16(iter) => iter.bits_def,
Self::Binary32(iter) => iter.bits_def,
Self::Unary8(iter) => iter.bits_def,
Self::Unary16(iter) => iter.bits_def,
Self::Unary32(iter) => iter.bits_def,
Self::Nilary(_) => 0,
}
}
}
/// Builds a [`ControlWordIterator`] from repetition and definition levels
/// by first calculating the width needed and then creating the iterator
/// with the appropriate width
pub fn build_control_word_iterator<'a>(
rep: Option<&'a [u16]>,
max_rep: u16,
def: Option<&'a [u16]>,
max_def: u16,
) -> ControlWordIterator<'a> {
let rep_width = if max_rep == 0 {
0
} else {
log_2_ceil(max_rep as u32) as u16
};
let rep_mask = if max_rep == 0 { 0 } else { get_mask(rep_width) };
let def_width = if max_def == 0 {
0
} else {
log_2_ceil(max_def as u32) as u16
};
let def_mask = if max_def == 0 { 0 } else { get_mask(def_width) };
let total_width = rep_width + def_width;
match (rep, def) {
(Some(rep), Some(def)) => {
let iter = rep.iter().copied().zip(def.iter().copied());
let def_width = def_width as usize;
if total_width <= 8 {
ControlWordIterator::Binary8(BinaryControlWordIterator {
repdef: iter,
rep_mask,
def_mask,
def_width,
bits_rep: rep_width as u8,
bits_def: def_width as u8,
phantom: std::marker::PhantomData,
})
} else if total_width <= 16 {
ControlWordIterator::Binary16(BinaryControlWordIterator {
repdef: iter,
rep_mask,
def_mask,
def_width,
bits_rep: rep_width as u8,
bits_def: def_width as u8,
phantom: std::marker::PhantomData,
})
} else {
ControlWordIterator::Binary32(BinaryControlWordIterator {
repdef: iter,
rep_mask,
def_mask,
def_width,
bits_rep: rep_width as u8,
bits_def: def_width as u8,
phantom: std::marker::PhantomData,
})
}
}
(Some(lev), None) => {
let iter = lev.iter().copied();
if total_width <= 8 {
ControlWordIterator::Unary8(UnaryControlWordIterator {
repdef: iter,
level_mask: rep_mask,
bits_rep: total_width as u8,
bits_def: 0,
phantom: std::marker::PhantomData,
})
} else if total_width <= 16 {
ControlWordIterator::Unary16(UnaryControlWordIterator {
repdef: iter,
level_mask: rep_mask,
bits_rep: total_width as u8,
bits_def: 0,
phantom: std::marker::PhantomData,
})
} else {
ControlWordIterator::Unary32(UnaryControlWordIterator {
repdef: iter,
level_mask: rep_mask,
bits_rep: total_width as u8,
bits_def: 0,
phantom: std::marker::PhantomData,
})
}
}
(None, Some(lev)) => {
let iter = lev.iter().copied();
if total_width <= 8 {
ControlWordIterator::Unary8(UnaryControlWordIterator {
repdef: iter,
level_mask: def_mask,
bits_rep: 0,
bits_def: total_width as u8,
phantom: std::marker::PhantomData,
})
} else if total_width <= 16 {
ControlWordIterator::Unary16(UnaryControlWordIterator {
repdef: iter,
level_mask: def_mask,
bits_rep: 0,
bits_def: total_width as u8,
phantom: std::marker::PhantomData,
})
} else {
ControlWordIterator::Unary32(UnaryControlWordIterator {
repdef: iter,
level_mask: def_mask,
bits_rep: 0,
bits_def: total_width as u8,
phantom: std::marker::PhantomData,
})
}
}
(None, None) => ControlWordIterator::Nilary(NilaryControlWordIterator {}),
}
}
/// A parser to unwrap control words into repetition and definition levels
///
/// This is the inverse of the [`ControlWordIterator`].
#[derive(Copy, Clone, Debug)]
pub enum ControlWordParser {
// First item is the bits to shift, second is the mask to apply (the mask can be
// calculated from the bits to shift but we don't want to calculate it each time)
BOTH8(u8, u32),
BOTH16(u8, u32),
BOTH32(u8, u32),
REP8,
REP16,
REP32,
DEF8,
DEF16,
DEF32,
NIL,
}
impl ControlWordParser {
fn parse_both<const WORD_SIZE: u8>(
src: &[u8],
dst_rep: &mut Vec<u16>,
dst_def: &mut Vec<u16>,
bits_to_shift: u8,
mask_to_apply: u32,
) {
match WORD_SIZE {
1 => {
let word = src[0];
let rep = word >> bits_to_shift;
let def = word & (mask_to_apply as u8);
dst_rep.push(rep as u16);
dst_def.push(def as u16);
}
2 => {
let word = u16::from_le_bytes([src[0], src[1]]);
let rep = word >> bits_to_shift;
let def = word & mask_to_apply as u16;
dst_rep.push(rep);
dst_def.push(def);
}
4 => {
let word = u32::from_le_bytes([src[0], src[1], src[2], src[3]]);
let rep = word >> bits_to_shift;
let def = word & mask_to_apply;
dst_rep.push(rep as u16);
dst_def.push(def as u16);
}
_ => unreachable!(),
}
}
fn parse_one<const WORD_SIZE: u8>(src: &[u8], dst: &mut Vec<u16>) {
match WORD_SIZE {
1 => {
let word = src[0];
dst.push(word as u16);
}
2 => {
let word = u16::from_le_bytes([src[0], src[1]]);
dst.push(word);
}
4 => {
let word = u32::from_le_bytes([src[0], src[1], src[2], src[3]]);
dst.push(word as u16);
}
_ => unreachable!(),
}
}
/// Returns the number of bytes per control word
pub fn bytes_per_word(&self) -> usize {
match self {
Self::BOTH8(..) => 1,
Self::BOTH16(..) => 2,
Self::BOTH32(..) => 4,
Self::REP8 => 1,
Self::REP16 => 2,
Self::REP32 => 4,
Self::DEF8 => 1,
Self::DEF16 => 2,
Self::DEF32 => 4,
Self::NIL => 0,
}
}
/// Appends the next control word to the rep & def buffers
///
/// `src` should be pointing at the first byte (little endian) of the control word
///
/// `dst_rep` and `dst_def` are the buffers to append the rep and def levels to.
/// They will not be appended to if not needed.
pub fn parse(&self, src: &[u8], dst_rep: &mut Vec<u16>, dst_def: &mut Vec<u16>) {
match self {
Self::BOTH8(bits_to_shift, mask_to_apply) => {
Self::parse_both::<1>(src, dst_rep, dst_def, *bits_to_shift, *mask_to_apply)
}
Self::BOTH16(bits_to_shift, mask_to_apply) => {
Self::parse_both::<2>(src, dst_rep, dst_def, *bits_to_shift, *mask_to_apply)
}
Self::BOTH32(bits_to_shift, mask_to_apply) => {
Self::parse_both::<4>(src, dst_rep, dst_def, *bits_to_shift, *mask_to_apply)
}
Self::REP8 => Self::parse_one::<1>(src, dst_rep),
Self::REP16 => Self::parse_one::<2>(src, dst_rep),
Self::REP32 => Self::parse_one::<4>(src, dst_rep),
Self::DEF8 => Self::parse_one::<1>(src, dst_def),
Self::DEF16 => Self::parse_one::<2>(src, dst_def),
Self::DEF32 => Self::parse_one::<4>(src, dst_def),
Self::NIL => {}
}
}
/// Creates a new parser from the number of bits used for the repetition and definition levels
pub fn new(bits_rep: u8, bits_def: u8) -> Self {
let total_bits = bits_rep + bits_def;
enum WordSize {
One,
Two,
Four,
}
let word_size = if total_bits <= 8 {
WordSize::One
} else if total_bits <= 16 {
WordSize::Two
} else {
WordSize::Four
};
match (bits_rep > 0, bits_def > 0, word_size) {
(false, false, _) => Self::NIL,
(false, true, WordSize::One) => Self::DEF8,
(false, true, WordSize::Two) => Self::DEF16,
(false, true, WordSize::Four) => Self::DEF32,
(true, false, WordSize::One) => Self::REP8,
(true, false, WordSize::Two) => Self::REP16,
(true, false, WordSize::Four) => Self::REP32,
(true, true, WordSize::One) => Self::BOTH8(bits_def, get_mask(bits_def as u16) as u32),
(true, true, WordSize::Two) => Self::BOTH16(bits_def, get_mask(bits_def as u16) as u32),
(true, true, WordSize::Four) => {
Self::BOTH32(bits_def, get_mask(bits_def as u16) as u32)
}
}
}
}
#[cfg(test)]
mod tests {
use arrow_buffer::{NullBuffer, OffsetBuffer, ScalarBuffer};
use crate::repdef::{
CompositeRepDefUnraveler, DefinitionInterpretation, RepDefUnraveler, SerializedRepDefs,
};
use super::RepDefBuilder;
fn validity(values: &[bool]) -> NullBuffer {
NullBuffer::from_iter(values.iter().copied())
}
fn offsets_32(values: &[i32]) -> OffsetBuffer<i32> {
OffsetBuffer::<i32>::new(ScalarBuffer::from_iter(values.iter().copied()))
}
fn offsets_64(values: &[i64]) -> OffsetBuffer<i64> {
OffsetBuffer::<i64>::new(ScalarBuffer::from_iter(values.iter().copied()))
}
#[test]
fn test_repdef_basic() {
// Basic case, rep & def
let mut builder = RepDefBuilder::default();
builder.add_offsets(
offsets_64(&[0, 2, 2, 5]),
Some(validity(&[true, false, true])),
);
builder.add_offsets(
offsets_64(&[0, 1, 3, 5, 5, 9]),
Some(validity(&[true, true, true, false, true])),
);
builder.add_validity_bitmap(validity(&[
true, true, true, false, false, false, true, true, false,
]));
let repdefs = RepDefBuilder::serialize(vec![builder]);
let rep = repdefs.repetition_levels.unwrap();
let def = repdefs.definition_levels.unwrap();
assert_eq!(vec![0, 0, 0, 3, 1, 1, 2, 1, 0, 0, 1], *def);
assert_eq!(vec![2, 1, 0, 2, 2, 0, 1, 1, 0, 0, 0], *rep);
let mut unraveler = CompositeRepDefUnraveler::new(vec![RepDefUnraveler::new(
Some(rep.as_ref().to_vec()),
Some(def.as_ref().to_vec()),
repdefs.def_meaning.into(),
)]);
// Note: validity doesn't exactly round-trip because repdef normalizes some of the
// redundant validity values
assert_eq!(
unraveler.unravel_validity(9),
Some(validity(&[
true, true, true, false, false, false, true, true, false
]))
);
let (off, val) = unraveler.unravel_offsets::<i32>().unwrap();
assert_eq!(off.inner(), offsets_32(&[0, 1, 3, 5, 5, 9]).inner());
assert_eq!(val, Some(validity(&[true, true, true, false, true])));
let (off, val) = unraveler.unravel_offsets::<i32>().unwrap();
assert_eq!(off.inner(), offsets_32(&[0, 2, 2, 5]).inner());
assert_eq!(val, Some(validity(&[true, false, true])));
}
#[test]
fn test_repdef_simple_null_empty_list() {
let check = |repdefs: SerializedRepDefs, last_def: DefinitionInterpretation| {
let rep = repdefs.repetition_levels.unwrap();
let def = repdefs.definition_levels.unwrap();
assert_eq!([1, 0, 1, 1, 0, 0], *rep);
assert_eq!([0, 0, 2, 0, 1, 0], *def);
assert!(repdefs.special_records.is_empty());
assert_eq!(
vec![DefinitionInterpretation::NullableItem, last_def,],
repdefs.def_meaning
);
};
// Null list and empty list should be serialized mostly the same
// Null case
let mut builder = RepDefBuilder::default();
builder.add_offsets(
offsets_32(&[0, 2, 2, 5]),
Some(validity(&[true, false, true])),
);
builder.add_validity_bitmap(validity(&[true, true, true, false, true]));
let repdefs = RepDefBuilder::serialize(vec![builder]);
check(repdefs, DefinitionInterpretation::NullableList);
// Empty case
let mut builder = RepDefBuilder::default();
builder.add_offsets(offsets_32(&[0, 2, 2, 5]), None);
builder.add_validity_bitmap(validity(&[true, true, true, false, true]));
let repdefs = RepDefBuilder::serialize(vec![builder]);
check(repdefs, DefinitionInterpretation::EmptyableList);
}
#[test]
fn test_repdef_empty_list_at_end() {
// Regresses a failure we encountered when the last item was an empty list
let mut builder = RepDefBuilder::default();
builder.add_offsets(offsets_32(&[0, 2, 5, 5]), None);
builder.add_validity_bitmap(validity(&[true, true, true, false, true]));
let repdefs = RepDefBuilder::serialize(vec![builder]);
let rep = repdefs.repetition_levels.unwrap();
let def = repdefs.definition_levels.unwrap();
assert_eq!([1, 0, 1, 0, 0, 1], *rep);
assert_eq!([0, 0, 0, 1, 0, 2], *def);
assert!(repdefs.special_records.is_empty());
assert_eq!(
vec![
DefinitionInterpretation::NullableItem,
DefinitionInterpretation::EmptyableList,
],
repdefs.def_meaning
);
}
#[test]
fn test_repdef_abnormal_nulls() {
// List nulls are allowed to have non-empty offsets and garbage values
// and the add_offsets call should normalize this
let mut builder = RepDefBuilder::default();
builder.add_offsets(
offsets_32(&[0, 2, 5, 8]),
Some(validity(&[true, false, true])),
);
builder.add_no_null(8);
let repdefs = RepDefBuilder::serialize(vec![builder]);
let rep = repdefs.repetition_levels.unwrap();
let def = repdefs.definition_levels.unwrap();
assert_eq!([1, 0, 1, 1, 0, 0], *rep);
assert_eq!([0, 0, 1, 0, 0, 0], *def);
assert_eq!(
vec![
DefinitionInterpretation::AllValidItem,
DefinitionInterpretation::NullableList,
],
repdefs.def_meaning
);
}
#[test]
fn test_repdef_sliced_offsets() {
// Sliced lists may have offsets that don't start with zero. The
// add_offsets call needs to normalize these to operate correctly.
let mut builder = RepDefBuilder::default();
builder.add_offsets(
offsets_32(&[5, 7, 7, 10]),
Some(validity(&[true, false, true])),
);
builder.add_no_null(5);
let repdefs = RepDefBuilder::serialize(vec![builder]);
let rep = repdefs.repetition_levels.unwrap();
let def = repdefs.definition_levels.unwrap();
assert_eq!([1, 0, 1, 1, 0, 0], *rep);
assert_eq!([0, 0, 1, 0, 0, 0], *def);
assert_eq!(
vec![
DefinitionInterpretation::AllValidItem,
DefinitionInterpretation::NullableList,
],
repdefs.def_meaning
);
}
#[test]
fn test_repdef_complex_null_empty() {
let mut builder = RepDefBuilder::default();
builder.add_offsets(
offsets_32(&[0, 4, 4, 4, 6]),
Some(validity(&[true, false, true, true])),
);
builder.add_offsets(
offsets_32(&[0, 1, 1, 2, 2, 2, 3]),
Some(validity(&[true, false, true, false, true, true])),
);
builder.add_no_null(3);
let repdefs = RepDefBuilder::serialize(vec![builder]);
let rep = repdefs.repetition_levels.unwrap();
let def = repdefs.definition_levels.unwrap();
assert_eq!([2, 1, 1, 1, 2, 2, 2, 1], *rep);
assert_eq!([0, 1, 0, 1, 3, 4, 2, 0], *def);
}
#[test]
fn test_repdef_empty_list_no_null() {
// Tests when we have some empty lists but no null lists. This case
// caused some bugs because we have definition but no nulls
let mut builder = RepDefBuilder::default();
builder.add_offsets(offsets_32(&[0, 4, 4, 4, 6]), None);
builder.add_no_null(6);
let repdefs = RepDefBuilder::serialize(vec![builder]);
let rep = repdefs.repetition_levels.unwrap();
let def = repdefs.definition_levels.unwrap();
assert_eq!([1, 0, 0, 0, 1, 1, 1, 0], *rep);
assert_eq!([0, 0, 0, 0, 1, 1, 0, 0], *def);
let mut unraveler = CompositeRepDefUnraveler::new(vec![RepDefUnraveler::new(
Some(rep.as_ref().to_vec()),
Some(def.as_ref().to_vec()),
repdefs.def_meaning.into(),
)]);
assert_eq!(unraveler.unravel_validity(6), None);
let (off, val) = unraveler.unravel_offsets::<i32>().unwrap();
assert_eq!(off.inner(), offsets_32(&[0, 4, 4, 4, 6]).inner());
assert_eq!(val, None);
}
#[test]
fn test_repdef_all_valid() {
let mut builder = RepDefBuilder::default();
builder.add_offsets(offsets_64(&[0, 2, 3, 5]), None);
builder.add_offsets(offsets_64(&[0, 1, 3, 5, 7, 9]), None);
builder.add_no_null(9);
let repdefs = RepDefBuilder::serialize(vec![builder]);
let rep = repdefs.repetition_levels.unwrap();
assert!(repdefs.definition_levels.is_none());
assert_eq!([2, 1, 0, 2, 0, 2, 0, 1, 0], *rep);
let mut unraveler = CompositeRepDefUnraveler::new(vec![RepDefUnraveler::new(
Some(rep.as_ref().to_vec()),
None,
repdefs.def_meaning.into(),
)]);
assert_eq!(unraveler.unravel_validity(9), None);
let (off, val) = unraveler.unravel_offsets::<i32>().unwrap();
assert_eq!(off.inner(), offsets_32(&[0, 1, 3, 5, 7, 9]).inner());
assert_eq!(val, None);
let (off, val) = unraveler.unravel_offsets::<i32>().unwrap();
assert_eq!(off.inner(), offsets_32(&[0, 2, 3, 5]).inner());
assert_eq!(val, None);
}
#[test]
fn test_repdef_no_rep() {
let mut builder = RepDefBuilder::default();
builder.add_no_null(5);
builder.add_validity_bitmap(validity(&[false, false, true, true, true]));
builder.add_validity_bitmap(validity(&[false, true, true, true, false]));
let repdefs = RepDefBuilder::serialize(vec![builder]);
assert!(repdefs.repetition_levels.is_none());
let def = repdefs.definition_levels.unwrap();
assert_eq!([2, 2, 0, 0, 1], *def);
let mut unraveler = CompositeRepDefUnraveler::new(vec![RepDefUnraveler::new(
None,
Some(def.as_ref().to_vec()),
repdefs.def_meaning.into(),
)]);
assert_eq!(
unraveler.unravel_validity(5),
Some(validity(&[false, false, true, true, false]))
);
assert_eq!(
unraveler.unravel_validity(5),
Some(validity(&[false, false, true, true, true]))
);
assert_eq!(unraveler.unravel_validity(5), None);
}
#[test]
fn test_composite_unravel() {
let mut builder = RepDefBuilder::default();
builder.add_offsets(
offsets_64(&[0, 2, 2, 5]),
Some(validity(&[true, false, true])),
);
let repdef1 = RepDefBuilder::serialize(vec![builder]);
let mut builder = RepDefBuilder::default();
builder.add_offsets(offsets_64(&[0, 1, 3, 5, 7, 9]), None);
let repdef2 = RepDefBuilder::serialize(vec![builder]);
let unravel1 = RepDefUnraveler::new(
repdef1.repetition_levels.map(|l| l.to_vec()),
repdef1.definition_levels.map(|l| l.to_vec()),
repdef1.def_meaning.into(),
);
let unravel2 = RepDefUnraveler::new(
repdef2.repetition_levels.map(|l| l.to_vec()),
repdef2.definition_levels.map(|l| l.to_vec()),
repdef2.def_meaning.into(),
);
let mut unraveler = CompositeRepDefUnraveler::new(vec![unravel1, unravel2]);
let (off, val) = unraveler.unravel_offsets::<i32>().unwrap();
assert_eq!(
off.inner(),
offsets_32(&[0, 2, 2, 5, 6, 8, 10, 12, 14]).inner()
);
assert_eq!(
val,
Some(validity(&[true, false, true, true, true, true, true, true]))
);
}
#[test]
fn test_repdef_multiple_builders() {
// Basic case, rep & def
let mut builder1 = RepDefBuilder::default();
builder1.add_offsets(offsets_64(&[0, 2]), None);
builder1.add_offsets(offsets_64(&[0, 1, 3]), None);
builder1.add_validity_bitmap(validity(&[true, true, true]));
let mut builder2 = RepDefBuilder::default();
builder2.add_offsets(offsets_64(&[0, 0, 3]), Some(validity(&[false, true])));
builder2.add_offsets(
offsets_64(&[0, 2, 2, 6]),
Some(validity(&[true, false, true])),
);
builder2.add_validity_bitmap(validity(&[false, false, false, true, true, false]));
let repdefs = RepDefBuilder::serialize(vec![builder1, builder2]);
let rep = repdefs.repetition_levels.unwrap();
let def = repdefs.definition_levels.unwrap();
assert_eq!([2, 1, 0, 2, 2, 0, 1, 1, 0, 0, 0], *rep);
assert_eq!([0, 0, 0, 3, 1, 1, 2, 1, 0, 0, 1], *def);
}
#[test]
fn test_slicer() {
let mut builder = RepDefBuilder::default();
builder.add_offsets(
offsets_64(&[0, 2, 2, 30, 30]),
Some(validity(&[true, false, true, true])),
);
builder.add_no_null(30);
let repdefs = RepDefBuilder::serialize(vec![builder]);
let mut rep_slicer = repdefs.rep_slicer().unwrap();
// First 5 items include a null list so we get 6 levels (12 bytes)
assert_eq!(rep_slicer.slice_next(5).len(), 12);
// Next 20 are all plain
assert_eq!(rep_slicer.slice_next(20).len(), 40);
// Last 5 include an empty list so we get 6 levels (12 bytes)
assert_eq!(rep_slicer.slice_rest().len(), 12);
let mut def_slicer = repdefs.rep_slicer().unwrap();
// First 5 items include a null list so we get 6 levels (12 bytes)
assert_eq!(def_slicer.slice_next(5).len(), 12);
// Next 20 are all plain
assert_eq!(def_slicer.slice_next(20).len(), 40);
// Last 5 include an empty list so we get 6 levels (12 bytes)
assert_eq!(def_slicer.slice_rest().len(), 12);
}
#[test]
fn test_control_words() {
// Convert to control words, verify expected, convert back, verify same as original
fn check(
rep: &[u16],
def: &[u16],
expected_values: Vec<u8>,
expected_bytes_per_word: usize,
expected_bits_rep: u8,
expected_bits_def: u8,
) {
let num_vals = rep.len().max(def.len());
let max_rep = rep.iter().max().copied().unwrap_or(0);
let max_def = def.iter().max().copied().unwrap_or(0);
let in_rep = if rep.is_empty() { None } else { Some(rep) };
let in_def = if def.is_empty() { None } else { Some(def) };
let mut iter = super::build_control_word_iterator(in_rep, max_rep, in_def, max_def);
assert_eq!(iter.bytes_per_word(), expected_bytes_per_word);
assert_eq!(iter.bits_rep(), expected_bits_rep);
assert_eq!(iter.bits_def(), expected_bits_def);
let mut cw_vec = Vec::with_capacity(num_vals * iter.bytes_per_word());
for _ in 0..num_vals {
iter.append_next(&mut cw_vec);
}
assert_eq!(expected_values, cw_vec);
let parser = super::ControlWordParser::new(expected_bits_rep, expected_bits_def);
let mut rep_out = Vec::with_capacity(num_vals);
let mut def_out = Vec::with_capacity(num_vals);
if expected_bytes_per_word > 0 {
for slice in cw_vec.chunks_exact(expected_bytes_per_word) {
parser.parse(slice, &mut rep_out, &mut def_out);
}
}
assert_eq!(rep, rep_out.as_slice());
assert_eq!(def, def_out.as_slice());
}
// Each will need 4 bits and so we should get 1-byte control words
let rep = &[0_u16, 7, 3, 2, 9, 8, 12, 5];
let def = &[5_u16, 3, 1, 2, 12, 15, 0, 2];
let expected = vec![
0b00000101, // 0, 5
0b01110011, // 7, 3
0b00110001, // 3, 1
0b00100010, // 2, 2
0b10011100, // 9, 12
0b10001111, // 8, 15
0b11000000, // 12, 0
0b01010010, // 5, 2
];
check(rep, def, expected, 1, 4, 4);
// Now we need 5 bits for def so we get 2-byte control words
let rep = &[0_u16, 7, 3, 2, 9, 8, 12, 5];
let def = &[5_u16, 3, 1, 2, 12, 22, 0, 2];
let expected = vec![
0b00000101, 0b00000000, // 0, 5
0b11100011, 0b00000000, // 7, 3
0b01100001, 0b00000000, // 3, 1
0b01000010, 0b00000000, // 2, 2
0b00101100, 0b00000001, // 9, 12
0b00010110, 0b00000001, // 8, 22
0b10000000, 0b00000001, // 12, 0
0b10100010, 0b00000000, // 5, 2
];
check(rep, def, expected, 2, 4, 5);
// Just rep, 4 bits so 1 byte each
let levels = &[0_u16, 7, 3, 2, 9, 8, 12, 5];
let expected = vec![
0b00000000, // 0
0b00000111, // 7
0b00000011, // 3
0b00000010, // 2
0b00001001, // 9
0b00001000, // 8
0b00001100, // 12
0b00000101, // 5
];
check(levels, &[], expected.clone(), 1, 4, 0);
// Just def
check(&[], levels, expected, 1, 0, 4);
// No rep, no def, no bytes
check(&[], &[], Vec::default(), 0, 0, 0);
}
}