lance_encoding/encodings/logical/primitive.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors
use std::{
collections::{HashMap, VecDeque},
fmt::Debug,
iter,
ops::Range,
sync::Arc,
vec,
};
use arrow::array::AsArray;
use arrow_array::{
make_array, types::UInt64Type, Array, ArrayRef, FixedSizeListArray, PrimitiveArray,
};
use arrow_buffer::{bit_util, BooleanBuffer, NullBuffer, ScalarBuffer};
use arrow_schema::{DataType, Field as ArrowField};
use futures::{future::BoxFuture, stream::FuturesUnordered, FutureExt, TryStreamExt};
use itertools::Itertools;
use lance_arrow::deepcopy::deep_copy_array;
use lance_core::{
cache::{Context, DeepSizeOf, FileMetadataCache},
datatypes::{
STRUCTURAL_ENCODING_FULLZIP, STRUCTURAL_ENCODING_META_KEY, STRUCTURAL_ENCODING_MINIBLOCK,
},
error::Error,
utils::bit::pad_bytes,
utils::hash::U8SliceKey,
};
use log::{debug, trace};
use snafu::{location, Location};
use crate::repdef::{
build_control_word_iterator, CompositeRepDefUnraveler, ControlWordIterator, ControlWordParser,
DefinitionInterpretation, RepDefSlicer,
};
use crate::statistics::{ComputeStat, GetStat, Stat};
use crate::utils::bytepack::ByteUnpacker;
use crate::{
data::{AllNullDataBlock, DataBlock, VariableWidthBlock},
utils::bytepack::BytepackedIntegerEncoder,
};
use crate::{
decoder::{FixedPerValueDecompressor, VariablePerValueDecompressor},
encoder::PerValueDataBlock,
};
use lance_core::{datatypes::Field, utils::tokio::spawn_cpu, Result};
use crate::{
buffer::LanceBuffer,
data::{BlockInfo, DataBlockBuilder, FixedWidthDataBlock},
decoder::{
BlockDecompressor, ColumnInfo, DecodeArrayTask, DecodePageTask, DecodedArray, DecodedPage,
DecompressorStrategy, FieldScheduler, FilterExpression, LoadedPage, LogicalPageDecoder,
MessageType, MiniBlockDecompressor, NextDecodeTask, PageEncoding, PageInfo, PageScheduler,
PrimitivePageDecoder, PriorityRange, ScheduledScanLine, SchedulerContext, SchedulingJob,
StructuralDecodeArrayTask, StructuralFieldDecoder, StructuralFieldScheduler,
StructuralPageDecoder, StructuralSchedulingJob, UnloadedPage,
},
encoder::{
ArrayEncodingStrategy, CompressionStrategy, EncodeTask, EncodedColumn, EncodedPage,
EncodingOptions, FieldEncoder, MiniBlockChunk, MiniBlockCompressed, OutOfLineBuffers,
},
encodings::physical::{decoder_from_array_encoding, ColumnBuffers, PageBuffers},
format::{pb, ProtobufUtils},
repdef::{LevelBuffer, RepDefBuilder, RepDefUnraveler},
EncodingsIo,
};
#[derive(Debug)]
struct PrimitivePage {
scheduler: Box<dyn PageScheduler>,
num_rows: u64,
page_index: u32,
}
/// A field scheduler for primitive fields
///
/// This maps to exactly one column and it assumes that the top-level
/// encoding of each page is "basic". The basic encoding decodes into an
/// optional buffer of validity and a fixed-width buffer of values
/// which is exactly what we need to create a primitive array.
///
/// Note: we consider booleans and fixed-size-lists of primitive types to be
/// primitive types. This is slightly different than arrow-rs's definition
#[derive(Debug)]
pub struct PrimitiveFieldScheduler {
data_type: DataType,
page_schedulers: Vec<PrimitivePage>,
num_rows: u64,
should_validate: bool,
column_index: u32,
}
impl PrimitiveFieldScheduler {
pub fn new(
column_index: u32,
data_type: DataType,
pages: Arc<[PageInfo]>,
buffers: ColumnBuffers,
should_validate: bool,
) -> Self {
let page_schedulers = pages
.iter()
.enumerate()
// Buggy versions of Lance could sometimes create empty pages
.filter(|(page_index, page)| {
log::trace!("Skipping empty page with index {}", page_index);
page.num_rows > 0
})
.map(|(page_index, page)| {
let page_buffers = PageBuffers {
column_buffers: buffers,
positions_and_sizes: &page.buffer_offsets_and_sizes,
};
let scheduler = decoder_from_array_encoding(
page.encoding.as_legacy(),
&page_buffers,
&data_type,
);
PrimitivePage {
scheduler,
num_rows: page.num_rows,
page_index: page_index as u32,
}
})
.collect::<Vec<_>>();
let num_rows = page_schedulers.iter().map(|p| p.num_rows).sum();
Self {
data_type,
page_schedulers,
num_rows,
should_validate,
column_index,
}
}
}
#[derive(Debug)]
struct PrimitiveFieldSchedulingJob<'a> {
scheduler: &'a PrimitiveFieldScheduler,
ranges: Vec<Range<u64>>,
page_idx: usize,
range_idx: usize,
range_offset: u64,
global_row_offset: u64,
}
impl<'a> PrimitiveFieldSchedulingJob<'a> {
pub fn new(scheduler: &'a PrimitiveFieldScheduler, ranges: Vec<Range<u64>>) -> Self {
Self {
scheduler,
ranges,
page_idx: 0,
range_idx: 0,
range_offset: 0,
global_row_offset: 0,
}
}
}
impl SchedulingJob for PrimitiveFieldSchedulingJob<'_> {
fn schedule_next(
&mut self,
context: &mut SchedulerContext,
priority: &dyn PriorityRange,
) -> Result<ScheduledScanLine> {
debug_assert!(self.range_idx < self.ranges.len());
// Get our current range
let mut range = self.ranges[self.range_idx].clone();
range.start += self.range_offset;
let mut cur_page = &self.scheduler.page_schedulers[self.page_idx];
trace!(
"Current range is {:?} and current page has {} rows",
range,
cur_page.num_rows
);
// Skip entire pages until we have some overlap with our next range
while cur_page.num_rows + self.global_row_offset <= range.start {
self.global_row_offset += cur_page.num_rows;
self.page_idx += 1;
trace!("Skipping entire page of {} rows", cur_page.num_rows);
cur_page = &self.scheduler.page_schedulers[self.page_idx];
}
// Now the cur_page has overlap with range. Continue looping through ranges
// until we find a range that exceeds the current page
let mut ranges_in_page = Vec::new();
while cur_page.num_rows + self.global_row_offset > range.start {
range.start = range.start.max(self.global_row_offset);
let start_in_page = range.start - self.global_row_offset;
let end_in_page = start_in_page + (range.end - range.start);
let end_in_page = end_in_page.min(cur_page.num_rows);
let last_in_range = (end_in_page + self.global_row_offset) >= range.end;
ranges_in_page.push(start_in_page..end_in_page);
if last_in_range {
self.range_idx += 1;
if self.range_idx == self.ranges.len() {
break;
}
range = self.ranges[self.range_idx].clone();
} else {
break;
}
}
let num_rows_in_next = ranges_in_page.iter().map(|r| r.end - r.start).sum();
trace!(
"Scheduling {} rows across {} ranges from page with {} rows (priority={}, column_index={}, page_index={})",
num_rows_in_next,
ranges_in_page.len(),
cur_page.num_rows,
priority.current_priority(),
self.scheduler.column_index,
cur_page.page_index,
);
self.global_row_offset += cur_page.num_rows;
self.page_idx += 1;
let physical_decoder = cur_page.scheduler.schedule_ranges(
&ranges_in_page,
context.io(),
priority.current_priority(),
);
let logical_decoder = PrimitiveFieldDecoder {
data_type: self.scheduler.data_type.clone(),
column_index: self.scheduler.column_index,
unloaded_physical_decoder: Some(physical_decoder),
physical_decoder: None,
rows_drained: 0,
num_rows: num_rows_in_next,
should_validate: self.scheduler.should_validate,
page_index: cur_page.page_index,
};
let decoder = Box::new(logical_decoder);
let decoder_ready = context.locate_decoder(decoder);
Ok(ScheduledScanLine {
decoders: vec![MessageType::DecoderReady(decoder_ready)],
rows_scheduled: num_rows_in_next,
})
}
fn num_rows(&self) -> u64 {
self.ranges.iter().map(|r| r.end - r.start).sum()
}
}
impl FieldScheduler for PrimitiveFieldScheduler {
fn num_rows(&self) -> u64 {
self.num_rows
}
fn schedule_ranges<'a>(
&'a self,
ranges: &[std::ops::Range<u64>],
// TODO: Could potentially use filter to simplify decode, something of a micro-optimization probably
_filter: &FilterExpression,
) -> Result<Box<dyn SchedulingJob + 'a>> {
Ok(Box::new(PrimitiveFieldSchedulingJob::new(
self,
ranges.to_vec(),
)))
}
fn initialize<'a>(
&'a self,
_filter: &'a FilterExpression,
_context: &'a SchedulerContext,
) -> BoxFuture<'a, Result<()>> {
// 2.0 schedulers do not need to initialize
std::future::ready(Ok(())).boxed()
}
}
/// A trait for figuring out how to schedule the data within
/// a single page.
trait StructuralPageScheduler: std::fmt::Debug + Send {
/// Fetches any metadata required for the page
fn initialize<'a>(
&'a mut self,
io: &Arc<dyn EncodingsIo>,
cache: &Arc<FileMetadataCache>,
) -> BoxFuture<'a, Result<()>>;
/// Schedules the read of the given ranges in the page
fn schedule_ranges(
&self,
ranges: &[Range<u64>],
io: &Arc<dyn EncodingsIo>,
) -> Result<BoxFuture<'static, Result<Box<dyn StructuralPageDecoder>>>>;
}
/// Metadata describing the decoded size of a mini-block
#[derive(Debug)]
struct ChunkMeta {
num_values: u64,
chunk_size_bytes: u64,
offset_bytes: u64,
}
/// A mini-block chunk that has been decoded and decompressed
#[derive(Debug)]
struct DecodedMiniBlockChunk {
rep: Option<ScalarBuffer<u16>>,
def: Option<ScalarBuffer<u16>>,
values: DataBlock,
}
/// A task to decode a one or more mini-blocks of data into an output batch
///
/// Note: Two batches might share the same mini-block of data. When this happens
/// then each batch gets a copy of the block and each batch decodes the block independently.
///
/// This means we have duplicated work but it is necessary to avoid having to synchronize
/// the decoding of the block. (TODO: test this theory)
#[derive(Debug)]
struct DecodeMiniBlockTask {
// The decompressors for the rep, def, and value buffers
rep_decompressor: Arc<dyn BlockDecompressor>,
def_decompressor: Arc<dyn BlockDecompressor>,
value_decompressor: Arc<dyn MiniBlockDecompressor>,
dictionary_data: Option<Arc<DataBlock>>,
def_meaning: Arc<[DefinitionInterpretation]>,
max_visible_level: u16,
instructions: Vec<(ChunkDrainInstructions, LoadedChunk)>,
}
impl DecodeMiniBlockTask {
fn decode_levels(
rep_decompressor: &dyn BlockDecompressor,
levels: LanceBuffer,
) -> Result<Option<ScalarBuffer<u16>>> {
let rep = rep_decompressor.decompress(levels)?;
match rep {
DataBlock::FixedWidth(mut rep) => Ok(Some(rep.data.borrow_to_typed_slice::<u16>())),
DataBlock::Constant(constant) => {
assert_eq!(constant.data.len(), 2);
if constant.data[0] == 0 && constant.data[1] == 0 {
Ok(None)
} else {
// Maybe in the future we will encode all-null def or
// constant rep (all 1-item lists?) in a constant encoding
// but that doesn't happen today so we don't need to worry.
todo!()
}
}
_ => unreachable!(),
}
}
// We are building a LevelBuffer (levels) and want to copy into it `total_len`
// values from `level_buf` starting at `offset`.
//
// We need to handle both the case where `levels` is None (no nulls encountered
// yet) and the case where `level_buf` is None (the input we are copying from has
// no nulls)
fn extend_levels(
range: Range<u64>,
levels: &mut Option<LevelBuffer>,
level_buf: &Option<impl AsRef<[u16]>>,
dest_offset: usize,
) {
if let Some(level_buf) = level_buf {
if levels.is_none() {
// This is the first non-empty def buf we've hit, fill in the past
// with 0 (valid)
let mut new_levels_vec =
LevelBuffer::with_capacity(dest_offset + (range.end - range.start) as usize);
new_levels_vec.extend(iter::repeat(0).take(dest_offset));
*levels = Some(new_levels_vec);
}
levels.as_mut().unwrap().extend(
level_buf.as_ref()[range.start as usize..range.end as usize]
.iter()
.copied(),
);
} else if let Some(levels) = levels {
let num_values = (range.end - range.start) as usize;
// This is an all-valid level_buf but we had nulls earlier and so we
// need to materialize it
levels.extend(iter::repeat(0).take(num_values));
}
}
/// Maps a range of rows to a range of items and a range of levels
///
/// If there is no repetition information this just returns the range as-is.
///
/// If there is repetition information then we need to do some work to figure out what
/// range of items corresponds to the requested range of rows.
///
/// For example, if the data is [[1, 2, 3], [4, 5], [6, 7]] and the range is 1..2 (i.e. just row
/// 1) then the user actually wants items 3..5. In the above case the rep levels would be:
///
/// Idx: 0 1 2 3 4 5 6
/// Rep: 1 0 0 1 0 1 0
///
/// So the start (1) maps to the second 1 (idx=3) and the end (2) maps to the third 1 (idx=5)
///
/// If there are invisible items then we don't count them when calcuating the range of items we
/// are interested in but we do count them when calculating the range of levels we are interested
/// in. As a result we have to return both the item range (first return value) and the level range
/// (second return value).
///
/// For example, if the data is [[1, 2, 3], [4, 5], NULL, [6, 7, 8]] and the range is 2..4 then the
/// user wants items 5..8 but they want levels 5..9. In the above case the rep/def levels would be:
///
/// Idx: 0 1 2 3 4 5 6 7 8
/// Rep: 1 0 0 1 0 1 1 0 0
/// Def: 0 0 0 0 0 1 0 0 0
/// Itm: 1 2 3 4 5 6 7 8
///
/// Finally, we have to contend with the fact that chunks may or may not start with a "preamble" of
/// trailing values that finish up a list from the previous chunk. In this case the first item does
/// not start at max_rep because it is a continuation of the previous chunk. For our purposes we do
/// not consider this a "row" and so the range 0..1 will refer to the first row AFTER the preamble.
///
/// We have a separate parameter (`preamble_action`) to control whether we want the preamble or not.
///
/// Note that the "trailer" is considered a "row" and if we want it we should include it in the range.
fn map_range(
range: Range<u64>,
rep: Option<&impl AsRef<[u16]>>,
def: Option<&impl AsRef<[u16]>>,
max_rep: u16,
max_visible_def: u16,
// The total number of items (not rows) in the chunk. This is not quite the same as
// rep.len() / def.len() because it doesn't count invisible items
total_items: u64,
preamble_action: PreambleAction,
) -> (Range<u64>, Range<u64>) {
if let Some(rep) = rep {
let mut rep = rep.as_ref();
// If there is a preamble and we need to skip it then do that first. The work is the same
// whether there is def information or not
let mut items_in_preamble = 0;
let first_row_start = match preamble_action {
PreambleAction::Skip | PreambleAction::Take => {
let first_row_start = if let Some(def) = def.as_ref() {
let mut first_row_start = None;
for (idx, (rep, def)) in rep.iter().zip(def.as_ref()).enumerate() {
if *rep == max_rep {
first_row_start = Some(idx);
break;
}
if *def <= max_visible_def {
items_in_preamble += 1;
}
}
first_row_start
} else {
let first_row_start = rep.iter().position(|&r| r == max_rep);
items_in_preamble = first_row_start.unwrap_or(rep.len());
first_row_start
};
// It is possible for a chunk to be entirely partial values but if it is then it
// should never show up as a preamble to skip
if first_row_start.is_none() {
assert!(preamble_action == PreambleAction::Take);
return (0..total_items, 0..rep.len() as u64);
}
let first_row_start = first_row_start.unwrap() as u64;
rep = &rep[first_row_start as usize..];
first_row_start
}
PreambleAction::Absent => {
debug_assert!(rep[0] == max_rep);
0
}
};
// We hit this case when all we needed was the preamble
if range.start == range.end {
debug_assert!(preamble_action == PreambleAction::Take);
return (0..items_in_preamble as u64, 0..first_row_start);
}
assert!(range.start < range.end);
let mut rows_seen = 0;
let mut new_start = 0;
let mut new_levels_start = 0;
if let Some(def) = def {
let def = &def.as_ref()[first_row_start as usize..];
// range.start == 0 always maps to 0 (even with invis items), otherwise we need to walk
let mut lead_invis_seen = 0;
if range.start > 0 {
if def[0] > max_visible_def {
lead_invis_seen += 1;
}
for (idx, (rep, def)) in rep.iter().zip(def).skip(1).enumerate() {
if *rep == max_rep {
rows_seen += 1;
if rows_seen == range.start {
new_start = idx as u64 + 1 - lead_invis_seen;
new_levels_start = idx as u64 + 1;
break;
}
if *def > max_visible_def {
lead_invis_seen += 1;
}
}
}
}
rows_seen += 1;
let mut new_end = u64::MAX;
let mut new_levels_end = rep.len() as u64;
let new_start_is_visible = def[new_levels_start as usize] <= max_visible_def;
let mut tail_invis_seen = if new_start_is_visible { 0 } else { 1 };
for (idx, (rep, def)) in rep[(new_levels_start + 1) as usize..]
.iter()
.zip(&def[(new_levels_start + 1) as usize..])
.enumerate()
{
if *rep == max_rep {
rows_seen += 1;
if rows_seen == range.end + 1 {
new_end = idx as u64 + new_start + 1 - tail_invis_seen;
new_levels_end = idx as u64 + new_levels_start + 1;
break;
}
if *def > max_visible_def {
tail_invis_seen += 1;
}
}
}
if new_end == u64::MAX {
new_levels_end = rep.len() as u64;
// This is the total number of visible items (minus any items in the preamble)
let total_invis_seen = lead_invis_seen + tail_invis_seen;
new_end = rep.len() as u64 - total_invis_seen;
}
assert_ne!(new_end, u64::MAX);
// Adjust for any skipped preamble
if preamble_action == PreambleAction::Skip {
// TODO: Should this be items_in_preamble? If so, add a
// unit test for this case
new_start += first_row_start;
new_end += first_row_start;
new_levels_start += first_row_start;
new_levels_end += first_row_start;
} else if preamble_action == PreambleAction::Take {
debug_assert_eq!(new_start, 0);
debug_assert_eq!(new_levels_start, 0);
new_end += first_row_start;
new_levels_end += first_row_start;
}
(new_start..new_end, new_levels_start..new_levels_end)
} else {
// Easy case, there are no invisible items, so we don't need to check for them
// The items range and levels range will be the same. We do still need to walk
// the rep levels to find the row boundaries
// range.start == 0 always maps to 0, otherwise we need to walk
if range.start > 0 {
for (idx, rep) in rep.iter().skip(1).enumerate() {
if *rep == max_rep {
rows_seen += 1;
if rows_seen == range.start {
new_start = idx as u64 + 1;
break;
}
}
}
}
let mut new_end = rep.len() as u64;
// range.end == max_items always maps to rep.len(), otherwise we need to walk
if range.end < total_items {
for (idx, rep) in rep[(new_start + 1) as usize..].iter().enumerate() {
if *rep == max_rep {
rows_seen += 1;
if rows_seen == range.end {
new_end = idx as u64 + new_start + 1;
break;
}
}
}
}
// Adjust for any skipped preamble
if preamble_action == PreambleAction::Skip {
new_start += first_row_start;
new_end += first_row_start;
} else if preamble_action == PreambleAction::Take {
debug_assert_eq!(new_start, 0);
new_end += first_row_start;
}
(new_start..new_end, new_start..new_end)
}
} else {
// No repetition info, easy case, just use the range as-is and the item
// and level ranges are the same
(range.clone(), range)
}
}
// Unwraps a miniblock chunk's "envelope" into the rep, def, and data buffers
fn decode_miniblock_chunk(
&self,
buf: &LanceBuffer,
items_in_chunk: u64,
) -> Result<DecodedMiniBlockChunk> {
// The first 6 bytes describe the size of the remaining buffers
let bytes_rep = u16::from_le_bytes([buf[0], buf[1]]) as usize;
let bytes_def = u16::from_le_bytes([buf[2], buf[3]]) as usize;
let bytes_val = u16::from_le_bytes([buf[4], buf[5]]) as usize;
debug_assert!(buf.len() >= bytes_rep + bytes_def + bytes_val + 6);
debug_assert!(
buf.len()
<= bytes_rep
+ bytes_def
+ bytes_val
+ 6
+ 1 // P1
+ (2 * MINIBLOCK_MAX_PADDING) // P2/P3
);
let p1 = bytes_rep % 2;
let rep = buf.slice_with_length(6, bytes_rep);
let def = buf.slice_with_length(6 + bytes_rep + p1, bytes_def);
let p2 = pad_bytes::<MINIBLOCK_ALIGNMENT>(6 + bytes_rep + p1 + bytes_def);
let values = buf.slice_with_length(6 + bytes_rep + bytes_def + p2, bytes_val);
let values = self.value_decompressor.decompress(values, items_in_chunk)?;
let rep = Self::decode_levels(self.rep_decompressor.as_ref(), rep)?;
let def = Self::decode_levels(self.def_decompressor.as_ref(), def)?;
Ok(DecodedMiniBlockChunk { rep, def, values })
}
}
impl DecodePageTask for DecodeMiniBlockTask {
fn decode(self: Box<Self>) -> Result<DecodedPage> {
// First, we create output buffers for the rep and def and data
let mut repbuf: Option<LevelBuffer> = None;
let mut defbuf: Option<LevelBuffer> = None;
let max_rep = self.def_meaning.iter().filter(|l| l.is_list()).count() as u16;
// This is probably an over-estimate but it's quick and easy to calculate
let estimated_size_bytes = self
.instructions
.iter()
.map(|(_, chunk)| chunk.data.len())
.sum::<usize>()
* 2;
let mut data_builder =
DataBlockBuilder::with_capacity_estimate(estimated_size_bytes as u64);
// We need to keep track of the offset into repbuf/defbuf that we are building up
let mut level_offset = 0;
// Now we iterate through each instruction and process it
for (instructions, chunk) in self.instructions.iter() {
// TODO: It's very possible that we have duplicate `buf` in self.instructions and we
// don't want to decode the buf again and again on the same thread.
let DecodedMiniBlockChunk { rep, def, values } =
self.decode_miniblock_chunk(&chunk.data, chunk.items_in_chunk)?;
// Our instructions tell us which rows we want to take from this chunk
let row_range_start =
instructions.rows_to_skip + instructions.chunk_instructions.rows_to_skip;
let row_range_end = row_range_start + instructions.rows_to_take;
// We use the rep info to map the row range to an item range / levels range
let (item_range, level_range) = Self::map_range(
row_range_start..row_range_end,
rep.as_ref(),
def.as_ref(),
max_rep,
self.max_visible_level,
chunk.items_in_chunk,
instructions.preamble_action,
);
// Now we append the data to the output buffers
Self::extend_levels(level_range.clone(), &mut repbuf, &rep, level_offset);
Self::extend_levels(level_range.clone(), &mut defbuf, &def, level_offset);
level_offset += (level_range.end - level_range.start) as usize;
data_builder.append(&values, item_range);
}
let data = data_builder.finish();
let unraveler = RepDefUnraveler::new(repbuf, defbuf, self.def_meaning.clone());
// if dictionary encoding is applied, do dictionary decode here.
if let Some(dictionary) = &self.dictionary_data {
// assume the indices are uniformly distributed.
let estimated_size_bytes = dictionary.data_size()
* (data.num_values() + dictionary.num_values() - 1)
/ dictionary.num_values();
let mut data_builder = DataBlockBuilder::with_capacity_estimate(estimated_size_bytes);
// if dictionary encoding is applied, indices are of type `UInt8`
if let DataBlock::FixedWidth(mut fixed_width_data_block) = data {
let indices = fixed_width_data_block.data.borrow_to_typed_slice::<u8>();
let indices = indices.as_ref();
indices.iter().for_each(|&idx| {
data_builder.append(dictionary, idx as u64..idx as u64 + 1);
});
let data = data_builder.finish();
return Ok(DecodedPage {
data,
repdef: unraveler,
});
}
}
Ok(DecodedPage {
data,
repdef: unraveler,
})
}
}
/// A chunk that has been loaded by the miniblock scheduler (but not
/// yet decoded)
#[derive(Debug)]
struct LoadedChunk {
data: LanceBuffer,
items_in_chunk: u64,
byte_range: Range<u64>,
chunk_idx: usize,
}
impl Clone for LoadedChunk {
fn clone(&self) -> Self {
Self {
// Safe as we always create borrowed buffers here
data: self.data.try_clone().unwrap(),
items_in_chunk: self.items_in_chunk,
byte_range: self.byte_range.clone(),
chunk_idx: self.chunk_idx,
}
}
}
/// Decodes mini-block formatted data. See [`PrimitiveStructuralEncoder`] for more
/// details on the different layouts.
#[derive(Debug)]
struct MiniBlockDecoder {
rep_decompressor: Arc<dyn BlockDecompressor>,
def_decompressor: Arc<dyn BlockDecompressor>,
value_decompressor: Arc<dyn MiniBlockDecompressor>,
def_meaning: Arc<[DefinitionInterpretation]>,
loaded_chunks: VecDeque<LoadedChunk>,
instructions: VecDeque<ChunkInstructions>,
offset_in_current_chunk: u64,
num_rows: u64,
items_per_row: u64,
dictionary: Option<Arc<DataBlock>>,
}
/// See [`MiniBlockScheduler`] for more details on the scheduling and decoding
/// process for miniblock encoded data.
impl StructuralPageDecoder for MiniBlockDecoder {
fn drain(&mut self, num_rows: u64) -> Result<Box<dyn DecodePageTask>> {
let mut items_desired = num_rows * self.items_per_row;
let mut need_preamble = false;
let mut skip_in_chunk = self.offset_in_current_chunk;
let mut drain_instructions = Vec::new();
while items_desired > 0 || need_preamble {
let (instructions, consumed) = self
.instructions
.front()
.unwrap()
.drain_from_instruction(&mut items_desired, &mut need_preamble, &mut skip_in_chunk);
while self.loaded_chunks.front().unwrap().chunk_idx
!= instructions.chunk_instructions.chunk_idx
{
self.loaded_chunks.pop_front();
}
drain_instructions.push((instructions, self.loaded_chunks.front().unwrap().clone()));
if consumed {
self.instructions.pop_front();
}
}
// We can throw away need_preamble here because it must be false. If it were true it would mean
// we were still in the middle of loading rows. We do need to latch skip_in_chunk though.
self.offset_in_current_chunk = skip_in_chunk;
let max_visible_level = self
.def_meaning
.iter()
.take_while(|l| !l.is_list())
.map(|l| l.num_def_levels())
.sum::<u16>();
Ok(Box::new(DecodeMiniBlockTask {
instructions: drain_instructions,
def_decompressor: self.def_decompressor.clone(),
rep_decompressor: self.rep_decompressor.clone(),
value_decompressor: self.value_decompressor.clone(),
dictionary_data: self.dictionary.clone(),
def_meaning: self.def_meaning.clone(),
max_visible_level,
}))
}
fn num_rows(&self) -> u64 {
self.num_rows
}
}
/// A scheduler for all-null data that has repetition and definition levels
///
/// We still need to do some I/O in this case because we need to figure out what kind of null we
/// are dealing with (null list, null struct, what level null struct, etc.)
///
/// TODO: Right now we just load the entire rep/def at initialization time and cache it. This is a touch
/// RAM aggressive and maybe we want something more lazy in the future. On the other hand, it's simple
/// and fast so...maybe not :)
#[derive(Debug)]
pub struct ComplexAllNullScheduler {
// Set from protobuf
buffer_offsets_and_sizes: Arc<[(u64, u64)]>,
def_meaning: Arc<[DefinitionInterpretation]>,
items_per_row: u64,
// Set during initialization
rep: Option<ScalarBuffer<u16>>,
def: Option<ScalarBuffer<u16>>,
}
impl ComplexAllNullScheduler {
pub fn new(
buffer_offsets_and_sizes: Arc<[(u64, u64)]>,
def_meaning: Arc<[DefinitionInterpretation]>,
items_per_row: u64,
) -> Self {
Self {
buffer_offsets_and_sizes,
def_meaning,
items_per_row,
rep: None,
def: None,
}
}
}
impl StructuralPageScheduler for ComplexAllNullScheduler {
fn initialize<'a>(
&'a mut self,
io: &Arc<dyn EncodingsIo>,
// TODO: Utilize cache here
_: &Arc<FileMetadataCache>,
) -> BoxFuture<'a, Result<()>> {
// Fully load the rep & def buffers, as needed
let (rep_pos, rep_size) = self.buffer_offsets_and_sizes[0];
let (def_pos, def_size) = self.buffer_offsets_and_sizes[1];
let has_rep = rep_size > 0;
let has_def = def_size > 0;
let mut reads = Vec::with_capacity(2);
if has_rep {
reads.push(rep_pos..rep_pos + rep_size);
}
if has_def {
reads.push(def_pos..def_pos + def_size);
}
let data = io.submit_request(reads, 0);
async move {
let data = data.await?;
let mut data_iter = data.into_iter();
if has_rep {
let rep = data_iter.next().unwrap();
let mut rep = LanceBuffer::from_bytes(rep, 2);
let rep = rep.borrow_to_typed_slice::<u16>();
self.rep = Some(rep);
} else {
self.rep = None
};
if has_def {
let def = data_iter.next().unwrap();
let mut def = LanceBuffer::from_bytes(def, 2);
let def = def.borrow_to_typed_slice::<u16>();
self.def = Some(def);
} else {
self.def = None;
}
Ok(())
}
.boxed()
}
fn schedule_ranges(
&self,
ranges: &[Range<u64>],
_io: &Arc<dyn EncodingsIo>,
) -> Result<BoxFuture<'static, Result<Box<dyn StructuralPageDecoder>>>> {
let ranges = VecDeque::from_iter(ranges.iter().cloned());
let num_rows = ranges.iter().map(|r| r.end - r.start).sum::<u64>();
let item_ranges = ranges
.iter()
.map(|r| r.start * self.items_per_row..r.end * self.items_per_row)
.collect();
Ok(std::future::ready(Ok(Box::new(ComplexAllNullPageDecoder {
ranges: item_ranges,
rep: self.rep.clone(),
def: self.def.clone(),
items_per_row: self.items_per_row,
num_rows,
def_meaning: self.def_meaning.clone(),
}) as Box<dyn StructuralPageDecoder>))
.boxed())
}
}
#[derive(Debug)]
pub struct ComplexAllNullPageDecoder {
ranges: VecDeque<Range<u64>>,
rep: Option<ScalarBuffer<u16>>,
def: Option<ScalarBuffer<u16>>,
num_rows: u64,
items_per_row: u64,
def_meaning: Arc<[DefinitionInterpretation]>,
}
impl ComplexAllNullPageDecoder {
fn drain_ranges(&mut self, num_rows: u64) -> Vec<Range<u64>> {
let mut rows_desired = num_rows;
let mut ranges = Vec::with_capacity(self.ranges.len());
while rows_desired > 0 {
let front = self.ranges.front_mut().unwrap();
let avail = front.end - front.start;
if avail > rows_desired {
ranges.push(front.start..front.start + rows_desired);
front.start += rows_desired;
rows_desired = 0;
} else {
ranges.push(self.ranges.pop_front().unwrap());
rows_desired -= avail;
}
}
ranges
}
}
impl StructuralPageDecoder for ComplexAllNullPageDecoder {
fn drain(&mut self, num_rows: u64) -> Result<Box<dyn DecodePageTask>> {
// TODO: This is going to need to be more complicated to deal with nested lists of nulls
// because the row ranges might not map directly to item ranges
//
// We should add test cases and handle this later
let num_items = num_rows * self.items_per_row;
let drained_ranges = self.drain_ranges(num_items);
Ok(Box::new(DecodeComplexAllNullTask {
ranges: drained_ranges,
rep: self.rep.clone(),
def: self.def.clone(),
def_meaning: self.def_meaning.clone(),
}))
}
fn num_rows(&self) -> u64 {
self.num_rows
}
}
/// We use `ranges` to slice into `rep` and `def` and create rep/def buffers
/// for the null data.
#[derive(Debug)]
pub struct DecodeComplexAllNullTask {
ranges: Vec<Range<u64>>,
rep: Option<ScalarBuffer<u16>>,
def: Option<ScalarBuffer<u16>>,
def_meaning: Arc<[DefinitionInterpretation]>,
}
impl DecodeComplexAllNullTask {
fn decode_level(
&self,
levels: &Option<ScalarBuffer<u16>>,
num_values: u64,
) -> Option<Vec<u16>> {
levels.as_ref().map(|levels| {
let mut referenced_levels = Vec::with_capacity(num_values as usize);
for range in &self.ranges {
referenced_levels.extend(
levels[range.start as usize..range.end as usize]
.iter()
.copied(),
);
}
referenced_levels
})
}
}
impl DecodePageTask for DecodeComplexAllNullTask {
fn decode(self: Box<Self>) -> Result<DecodedPage> {
let num_values = self.ranges.iter().map(|r| r.end - r.start).sum::<u64>();
let data = DataBlock::AllNull(AllNullDataBlock { num_values });
let rep = self.decode_level(&self.rep, num_values);
let def = self.decode_level(&self.def, num_values);
let unraveler = RepDefUnraveler::new(rep, def, self.def_meaning);
Ok(DecodedPage {
data,
repdef: unraveler,
})
}
}
/// A scheduler for simple all-null data
///
/// "simple" all-null data is data that is all null and only has a single level of definition and
/// no repetition. We don't need to read any data at all in this case.
#[derive(Debug, Default)]
pub struct SimpleAllNullScheduler {}
impl StructuralPageScheduler for SimpleAllNullScheduler {
fn initialize<'a>(
&'a mut self,
_io: &Arc<dyn EncodingsIo>,
_cache: &Arc<FileMetadataCache>,
) -> BoxFuture<'a, Result<()>> {
std::future::ready(Ok(())).boxed()
}
fn schedule_ranges(
&self,
ranges: &[Range<u64>],
_io: &Arc<dyn EncodingsIo>,
) -> Result<BoxFuture<'static, Result<Box<dyn StructuralPageDecoder>>>> {
let num_rows = ranges.iter().map(|r| r.end - r.start).sum::<u64>();
Ok(std::future::ready(Ok(
Box::new(SimpleAllNullPageDecoder { num_rows }) as Box<dyn StructuralPageDecoder>
))
.boxed())
}
}
/// A page decode task for all-null data without any
/// repetition and only a single level of definition
#[derive(Debug)]
struct SimpleAllNullDecodePageTask {
num_values: u64,
}
impl DecodePageTask for SimpleAllNullDecodePageTask {
fn decode(self: Box<Self>) -> Result<DecodedPage> {
let unraveler = RepDefUnraveler::new(
None,
Some(vec![1; self.num_values as usize]),
Arc::new([DefinitionInterpretation::NullableItem]),
);
Ok(DecodedPage {
data: DataBlock::AllNull(AllNullDataBlock {
num_values: self.num_values,
}),
repdef: unraveler,
})
}
}
#[derive(Debug)]
pub struct SimpleAllNullPageDecoder {
num_rows: u64,
}
impl StructuralPageDecoder for SimpleAllNullPageDecoder {
fn drain(&mut self, num_rows: u64) -> Result<Box<dyn DecodePageTask>> {
Ok(Box::new(SimpleAllNullDecodePageTask {
num_values: num_rows,
}))
}
fn num_rows(&self) -> u64 {
self.num_rows
}
}
#[derive(Debug, Clone)]
struct MiniBlockSchedulerDictionary {
// These come from the protobuf
dictionary_decompressor: Arc<dyn BlockDecompressor>,
dictionary_buf_position_and_size: (u64, u64),
dictionary_data_alignment: u64,
}
/// State that is loaded once and cached for future lookups
#[derive(Debug)]
struct MiniBlockCacheableState {
/// Metadata that describes each chunk in the page
chunk_meta: Vec<ChunkMeta>,
/// The repetition index for each chunk
///
/// There will be one element per chunk if no repetition (# items)
/// Otherwise, there will be one element plus N elements where N
/// is the maximum nested random access supported
rep_index: Vec<Vec<u64>>,
/// The dictionary for the page, if any
dictionary: Option<Arc<DataBlock>>,
}
impl DeepSizeOf for MiniBlockCacheableState {
fn deep_size_of_children(&self, context: &mut Context) -> usize {
self.rep_index.deep_size_of_children(context)
+ self
.dictionary
.as_ref()
.map(|dict| dict.data_size() as usize)
.unwrap_or(0)
}
}
/// A scheduler for a page that has been encoded with the mini-block layout
///
/// Scheduling mini-block encoded data is simple in concept and somewhat complex
/// in practice.
///
/// First, during initialization, we load the chunk metadata, the repetition index,
/// and the dictionary (these last two may not be present)
///
/// Then, during scheduling, we use the user's requested row ranges and the repetition
/// index to determine which chunks we need and which rows we need from those chunks.
///
/// For example, if the repetition index is: [50, 3], [50, 0], [10, 0] and the range
/// from the user is 40..60 then we need to:
///
/// - Read the first chunk and skip the first 40 rows, then read 10 full rows, and
/// then read 3 items for the 11th row of our range.
/// - Read the second chunk and read the remaining items in our 11th row and then read
/// the remaining 9 full rows.
///
/// Then, if we are going to decode that in batches of 5, we need to make decode tasks.
/// The first two decode tasks will just need the first chunk. The third decode task will
/// need the first chunk (for the trailer which has the 11th row in our range) and the second
/// chunk. The final decode task will just need the second chunk.
///
/// The above prose descriptions are what are represented by [`ChunkInstructions`] and
/// [`ChunkDrainInstructions`].
#[derive(Debug)]
pub struct MiniBlockScheduler {
// These come from the protobuf
buffer_offsets_and_sizes: Vec<(u64, u64)>,
priority: u64,
items_in_page: u64,
items_per_row: u64,
repetition_index_depth: u16,
cache_key: String,
rep_decompressor: Arc<dyn BlockDecompressor>,
def_decompressor: Arc<dyn BlockDecompressor>,
value_decompressor: Arc<dyn MiniBlockDecompressor>,
def_meaning: Arc<[DefinitionInterpretation]>,
dictionary: Option<MiniBlockSchedulerDictionary>,
// This is set after initialization
page_meta: Option<Arc<MiniBlockCacheableState>>,
}
impl MiniBlockScheduler {
#[allow(clippy::too_many_arguments)]
fn try_new(
buffer_offsets_and_sizes: &[(u64, u64)],
priority: u64,
items_in_page: u64,
items_per_row: u64,
page_number: usize,
column_number: usize,
layout: &pb::MiniBlockLayout,
decompressors: &dyn DecompressorStrategy,
) -> Result<Self> {
let rep_decompressor =
decompressors.create_block_decompressor(layout.rep_compression.as_ref().unwrap())?;
let def_decompressor =
decompressors.create_block_decompressor(layout.def_compression.as_ref().unwrap())?;
let def_meaning = layout
.layers
.iter()
.map(|l| ProtobufUtils::repdef_layer_to_def_interp(*l))
.collect::<Vec<_>>();
let value_decompressor = decompressors
.create_miniblock_decompressor(layout.value_compression.as_ref().unwrap())?;
let dictionary = if let Some(dictionary_encoding) = layout.dictionary.as_ref() {
match dictionary_encoding.array_encoding.as_ref().unwrap() {
pb::array_encoding::ArrayEncoding::Variable(_) => {
Some(MiniBlockSchedulerDictionary {
dictionary_decompressor: decompressors
.create_block_decompressor(dictionary_encoding)?
.into(),
dictionary_buf_position_and_size: buffer_offsets_and_sizes[2],
dictionary_data_alignment: 4,
})
}
pb::array_encoding::ArrayEncoding::Flat(_) => Some(MiniBlockSchedulerDictionary {
dictionary_decompressor: decompressors
.create_block_decompressor(dictionary_encoding)?
.into(),
dictionary_buf_position_and_size: buffer_offsets_and_sizes[2],
dictionary_data_alignment: 16,
}),
_ => {
unreachable!("Currently only encodings `BinaryBlock` and `Flat` used for encoding MiniBlock dictionary.")
}
}
} else {
None
};
let cache_key = format!("{}-{}", page_number, column_number);
Ok(Self {
buffer_offsets_and_sizes: buffer_offsets_and_sizes.to_vec(),
rep_decompressor: rep_decompressor.into(),
def_decompressor: def_decompressor.into(),
value_decompressor: value_decompressor.into(),
repetition_index_depth: layout.repetition_index_depth as u16,
priority,
cache_key,
items_in_page,
items_per_row,
dictionary,
def_meaning: def_meaning.into(),
page_meta: None,
})
}
fn lookup_chunks(&self, chunk_indices: &[usize]) -> Vec<LoadedChunk> {
let page_meta = self.page_meta.as_ref().unwrap();
chunk_indices
.iter()
.map(|&chunk_idx| {
let chunk_meta = &page_meta.chunk_meta[chunk_idx];
let bytes_start = chunk_meta.offset_bytes;
let bytes_end = bytes_start + chunk_meta.chunk_size_bytes;
LoadedChunk {
byte_range: bytes_start..bytes_end,
items_in_chunk: chunk_meta.num_values,
chunk_idx,
data: LanceBuffer::empty(),
}
})
.collect()
}
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
enum PreambleAction {
Take,
Skip,
Absent,
}
// TODO: Add test cases for the all-preamble and all-trailer cases
// When we schedule a chunk we use the repetition index (or, if none exists, just the # of items
// in each chunk) to map a user requested range into a set of ChunkInstruction objects which tell
// us how exactly to read from the chunk.
#[derive(Clone, Debug, PartialEq, Eq)]
struct ChunkInstructions {
// The index of the chunk to read
chunk_idx: usize,
// A "preamble" is when a chunk begins with a continuation of the previous chunk's list. If there
// is no repetition index there is never a preamble.
//
// It's possible for a chunk to be entirely premable. For example, if there is a really large list
// that spans several chunks.
preamble: PreambleAction,
// How many complete rows (not including the preamble or trailer) to skip
//
// If this is non-zero then premable must not be Take
rows_to_skip: u64,
// How many complete (non-preamble / non-trailer) rows to take
rows_to_take: u64,
// A "trailer" is when a chunk ends with a partial list. If there is no repetition index there is
// never a trailer.
//
// It's possible for a chunk to be entirely trailer. This would mean the chunk starts with the beginning
// of a list and that list is continued in the next chunk.
//
// If this is true then we want to include the trailer
take_trailer: bool,
}
// First, we schedule a bunch of [`ChunkInstructions`] based on the users ranges. Then we
// start decoding them, based on a batch size, which might not align with what we scheduled.
//
// This results in `ChunkDrainInstructions` which targets a contiguous slice of a `ChunkInstructions`
//
// So if `ChunkInstructions` is "skip preamble, skip 10, take 50, take trailer" and we are decoding in
// batches of size 10 we might have a `ChunkDrainInstructions` that targets that chunk and has its own
// skip of 17 and take of 10. This would mean we decode the chunk, skip the preamble and 27 rows, and
// then take 10 rows.
//
// One very confusing bit is that `rows_to_take` includes the trailer. So if we have two chunks:
// -no preamble, skip 5, take 10, take trailer
// -take preamble, skip 0, take 50, no trailer
//
// and we are draining 20 rows then the drain instructions for the first batch will be:
// - no preamble, skip 0 (from chunk 0), take 11 (from chunk 0)
// - take preamble (from chunk 1), skip 0 (from chunk 1), take 9 (from chunk 1)
#[derive(Debug, PartialEq, Eq)]
struct ChunkDrainInstructions {
chunk_instructions: ChunkInstructions,
rows_to_skip: u64,
rows_to_take: u64,
preamble_action: PreambleAction,
}
impl ChunkInstructions {
// Given a repetition index and a set of user ranges we need to figure out how to read from the chunks
//
// We assume that `user_ranges` are in sorted order and non-overlapping
//
// The output will be a set of `ChunkInstructions` which tell us how to read from the chunks
fn schedule_instructions(rep_index: &[Vec<u64>], user_ranges: &[Range<u64>]) -> Vec<Self> {
let rep_len = rep_index.len();
let mut rep_iter = rep_index.iter().enumerate();
let (mut cur_rep_idx, mut cur_rep) = rep_iter.next().unwrap();
let mut offset = 0;
let mut chunk_has_preamble = false;
let mut chunk_has_trailer = cur_rep[1] > 0;
let mut chunk_instructions = Vec::with_capacity(rep_len + user_ranges.len());
for user_range in user_ranges {
let mut to_skip = user_range.start - offset;
let mut rows_needed = user_range.end - user_range.start;
let mut need_preamble = false;
while rows_needed > 0 || need_preamble {
let mut rows_in_chunk_incl_trailer = cur_rep[0];
if chunk_has_trailer {
rows_in_chunk_incl_trailer += 1;
}
if chunk_has_preamble {
rows_in_chunk_incl_trailer -= 1;
}
let mut consumed_chunk = false;
if rows_in_chunk_incl_trailer <= to_skip {
consumed_chunk = true;
need_preamble = false;
} else {
// We have overlap with the current chunk
let rows_available = rows_in_chunk_incl_trailer - to_skip;
let rows_to_take = if rows_available > rows_needed {
rows_needed
} else {
consumed_chunk = true;
rows_available
};
rows_needed -= rows_to_take;
let mut take_trailer = false;
let preamble = if chunk_has_preamble {
if need_preamble {
PreambleAction::Take
} else {
PreambleAction::Skip
}
} else {
PreambleAction::Absent
};
let mut rows_to_take_no_trailer = rows_to_take;
// Are we taking the trailer? If so, make sure we mark that we need the preamble
if rows_to_take == rows_available && chunk_has_trailer {
take_trailer = true;
need_preamble = true;
rows_to_take_no_trailer -= 1;
} else {
need_preamble = false;
};
chunk_instructions.push(Self {
preamble,
chunk_idx: cur_rep_idx,
rows_to_skip: to_skip,
rows_to_take: rows_to_take_no_trailer,
take_trailer,
});
}
if consumed_chunk {
to_skip = to_skip.saturating_sub(rows_in_chunk_incl_trailer);
offset += rows_in_chunk_incl_trailer;
// The next chunk has a preamble if the current chunk has a trailer
chunk_has_preamble = chunk_has_trailer;
// This branch could fail on the very last iteration if we are consuming the last row
if let Some((next_rep_idx, next_rep)) = rep_iter.next() {
cur_rep_idx = next_rep_idx;
cur_rep = next_rep;
chunk_has_trailer = cur_rep[1] > 0;
}
}
}
}
// If there were multiple ranges we may have multiple instructions for a single chunk. Merge them now if they
// are _adjacent_ (i.e. don't merge "take first row of chunk 0" and "take third row of chunk 0" into "take 2
// rows of chunk 0 starting at 0")
if user_ranges.len() > 1 {
// TODO: Could probably optimize this allocation away
let mut merged_instructions = Vec::with_capacity(chunk_instructions.len());
let mut instructions_iter = chunk_instructions.into_iter();
merged_instructions.push(instructions_iter.next().unwrap());
for instruction in instructions_iter {
let last = merged_instructions.last_mut().unwrap();
if last.chunk_idx == instruction.chunk_idx
&& last.rows_to_take + last.rows_to_skip == instruction.rows_to_skip
{
last.rows_to_take += instruction.rows_to_take;
last.take_trailer |= instruction.take_trailer;
} else {
merged_instructions.push(instruction);
}
}
merged_instructions
} else {
chunk_instructions
}
}
fn drain_from_instruction(
&self,
rows_desired: &mut u64,
need_preamble: &mut bool,
skip_in_chunk: &mut u64,
) -> (ChunkDrainInstructions, bool) {
// If we need the premable then we shouldn't be skipping anything
debug_assert!(!*need_preamble || *skip_in_chunk == 0);
let mut rows_avail = self.rows_to_take - *skip_in_chunk;
let has_preamble = self.preamble != PreambleAction::Absent;
let preamble_action = match (*need_preamble, has_preamble) {
(true, true) => PreambleAction::Take,
(true, false) => panic!("Need preamble but there isn't one"),
(false, true) => PreambleAction::Skip,
(false, false) => PreambleAction::Absent,
};
// Did the scheduled chunk have a trailer? If so, we have one extra row available
if self.take_trailer {
rows_avail += 1;
}
// How many rows are we actually taking in this take step (including the preamble
// and trailer both as individual rows)
let rows_taking = if *rows_desired >= rows_avail {
// We want all the rows. If there is a trailer we are grabbing it and will need
// the preamble of the next chunk
*need_preamble = self.take_trailer;
rows_avail
} else {
// We aren't taking all the rows. Even if there is a trailer we aren't taking
// it so we will not need the preamble
*need_preamble = false;
*rows_desired
};
let rows_skipped = *skip_in_chunk;
// Update the state for the next iteration
let consumed_chunk = if *rows_desired >= rows_avail {
*rows_desired -= rows_avail;
*skip_in_chunk = 0;
true
} else {
*skip_in_chunk += *rows_desired;
*rows_desired = 0;
false
};
(
ChunkDrainInstructions {
chunk_instructions: self.clone(),
rows_to_skip: rows_skipped,
rows_to_take: rows_taking,
preamble_action,
},
consumed_chunk,
)
}
}
impl StructuralPageScheduler for MiniBlockScheduler {
fn initialize<'a>(
&'a mut self,
io: &Arc<dyn EncodingsIo>,
cache: &Arc<FileMetadataCache>,
) -> BoxFuture<'a, Result<()>> {
if let Some(cached_state) = cache.get_by_str(&self.cache_key) {
self.page_meta = Some(cached_state);
return Box::pin(std::future::ready(Ok(())));
}
// We always need to fetch chunk metadata. We may also need to fetch a dictionary and
// we may also need to fetch the repetition index. Here, we gather what buffers we
// need.
let (meta_buf_position, meta_buf_size) = self.buffer_offsets_and_sizes[0];
let value_buf_position = self.buffer_offsets_and_sizes[1].0;
let mut bufs_needed = 1;
if self.dictionary.is_some() {
bufs_needed += 1;
}
if self.repetition_index_depth > 0 {
bufs_needed += 1;
}
let mut required_ranges = Vec::with_capacity(bufs_needed);
required_ranges.push(meta_buf_position..meta_buf_position + meta_buf_size);
if let Some(ref dictionary) = self.dictionary {
required_ranges.push(
dictionary.dictionary_buf_position_and_size.0
..dictionary.dictionary_buf_position_and_size.0
+ dictionary.dictionary_buf_position_and_size.1,
);
}
if self.repetition_index_depth > 0 {
let (rep_index_pos, rep_index_size) = self.buffer_offsets_and_sizes.last().unwrap();
required_ranges.push(*rep_index_pos..*rep_index_pos + *rep_index_size);
}
let io_req = io.submit_request(required_ranges, 0);
let cache = cache.clone();
async move {
let mut buffers = io_req.await?.into_iter().fuse();
let meta_bytes = buffers.next().unwrap();
let dictionary_bytes = self.dictionary.as_ref().and_then(|_| buffers.next());
let rep_index_bytes = buffers.next();
// Parse the metadata and build the chunk meta
assert!(meta_bytes.len() % 2 == 0);
let mut bytes = LanceBuffer::from_bytes(meta_bytes, 2);
let words = bytes.borrow_to_typed_slice::<u16>();
let words = words.as_ref();
let mut page_meta = MiniBlockCacheableState {
chunk_meta: Vec::with_capacity(words.len()),
rep_index: Vec::with_capacity(words.len()),
dictionary: None,
};
let mut rows_counter = 0;
let mut offset_bytes = value_buf_position;
for (word_idx, word) in words.iter().enumerate() {
let log_num_values = word & 0x0F;
let divided_bytes = word >> 4;
let num_bytes = (divided_bytes as usize + 1) * MINIBLOCK_ALIGNMENT;
debug_assert!(num_bytes > 0);
let num_values = if word_idx < words.len() - 1 {
debug_assert!(log_num_values > 0);
1 << log_num_values
} else {
debug_assert_eq!(log_num_values, 0);
self.items_in_page - rows_counter
};
rows_counter += num_values;
page_meta.chunk_meta.push(ChunkMeta {
num_values,
chunk_size_bytes: num_bytes as u64,
offset_bytes,
});
offset_bytes += num_bytes as u64;
}
// Build the repetition index
if let Some(rep_index_data) = rep_index_bytes {
// If we have a repetition index then we use that
// TODO: Compress the repetition index :)
assert!(rep_index_data.len() % 8 == 0);
let mut repetition_index_vals = LanceBuffer::from_bytes(rep_index_data, 8);
let repetition_index_vals = repetition_index_vals.borrow_to_typed_slice::<u64>();
// Unflatten
page_meta.rep_index = repetition_index_vals
.as_ref()
.chunks_exact(self.repetition_index_depth as usize + 1)
.map(|c| c.to_vec())
.collect();
} else {
// Default rep index is just the number of items in each chunk
// with 0 partials/leftovers
page_meta.rep_index = page_meta
.chunk_meta
.iter()
.map(|c| vec![c.num_values, 0])
.collect();
};
// decode dictionary
if let Some(ref mut dictionary) = self.dictionary {
let dictionary_data = dictionary_bytes.unwrap();
page_meta.dictionary =
Some(Arc::new(dictionary.dictionary_decompressor.decompress(
LanceBuffer::from_bytes(
dictionary_data,
dictionary.dictionary_data_alignment,
),
)?));
};
let page_meta = Arc::new(page_meta);
cache.insert_by_str(&self.cache_key, page_meta.clone());
self.page_meta = Some(page_meta);
Ok(())
}
.boxed()
}
fn schedule_ranges(
&self,
ranges: &[Range<u64>],
io: &Arc<dyn EncodingsIo>,
) -> Result<BoxFuture<'static, Result<Box<dyn StructuralPageDecoder>>>> {
let num_rows = ranges.iter().map(|r| r.end - r.start).sum();
let ranges = ranges
.iter()
.map(|r| r.start * self.items_per_row..r.end * self.items_per_row)
.collect::<Vec<_>>();
let page_meta = self.page_meta.as_ref().unwrap();
let chunk_instructions =
ChunkInstructions::schedule_instructions(&page_meta.rep_index, &ranges);
debug_assert_eq!(
num_rows * self.items_per_row,
chunk_instructions
.iter()
.map(|ci| {
let taken = ci.rows_to_take;
if ci.take_trailer {
taken + 1
} else {
taken
}
})
.sum::<u64>()
);
let chunks_needed = chunk_instructions
.iter()
.map(|ci| ci.chunk_idx)
.unique()
.collect::<Vec<_>>();
let mut loaded_chunks = self.lookup_chunks(&chunks_needed);
let chunk_ranges = loaded_chunks
.iter()
.map(|c| c.byte_range.clone())
.collect::<Vec<_>>();
let loaded_chunk_data = io.submit_request(chunk_ranges, self.priority);
let rep_decompressor = self.rep_decompressor.clone();
let def_decompressor = self.def_decompressor.clone();
let value_decompressor = self.value_decompressor.clone();
let dictionary = page_meta
.dictionary
.as_ref()
.map(|dictionary| dictionary.clone());
let def_meaning = self.def_meaning.clone();
let items_per_row = self.items_per_row;
Ok(async move {
let loaded_chunk_data = loaded_chunk_data.await?;
for (loaded_chunk, chunk_data) in loaded_chunks.iter_mut().zip(loaded_chunk_data) {
loaded_chunk.data = LanceBuffer::from_bytes(chunk_data, 1);
}
Ok(Box::new(MiniBlockDecoder {
rep_decompressor,
def_decompressor,
value_decompressor,
def_meaning,
loaded_chunks: VecDeque::from_iter(loaded_chunks),
instructions: VecDeque::from(chunk_instructions),
offset_in_current_chunk: 0,
dictionary,
num_rows,
items_per_row,
}) as Box<dyn StructuralPageDecoder>)
}
.boxed())
}
}
#[derive(Debug)]
struct FullZipRepIndexDetails {
buf_position: u64,
bytes_per_value: u64, // Will be 1, 2, 4, or 8
}
#[derive(Debug)]
enum PerValueDecompressor {
Fixed(Arc<dyn FixedPerValueDecompressor>),
Variable(Arc<dyn VariablePerValueDecompressor>),
}
#[derive(Debug)]
struct FullZipDecodeDetails {
value_decompressor: PerValueDecompressor,
def_meaning: Arc<[DefinitionInterpretation]>,
ctrl_word_parser: ControlWordParser,
max_rep: u16,
max_visible_def: u16,
items_per_row: u64,
}
/// A scheduler for full-zip encoded data
///
/// When the data type has a fixed-width then we simply need to map from
/// row ranges to byte ranges using the fixed-width of the data type.
///
/// When the data type is variable-width or has any repetition then a
/// repetition index is required.
#[derive(Debug)]
pub struct FullZipScheduler {
data_buf_position: u64,
rep_index: Option<FullZipRepIndexDetails>,
priority: u64,
rows_in_page: u64,
bits_per_offset: u8,
details: Arc<FullZipDecodeDetails>,
}
impl FullZipScheduler {
fn try_new(
buffer_offsets_and_sizes: &[(u64, u64)],
priority: u64,
rows_in_page: u64,
items_per_row: u64,
layout: &pb::FullZipLayout,
decompressors: &dyn DecompressorStrategy,
bits_per_offset: u8,
) -> Result<Self> {
// We don't need the data_buf_size because either the data type is
// fixed-width (and we can tell size from rows_in_page) or it is not
// and we have a repetition index.
let (data_buf_position, _) = buffer_offsets_and_sizes[0];
let rep_index = buffer_offsets_and_sizes.get(1).map(|(pos, len)| {
let num_reps = (items_per_row * rows_in_page) + 1;
let bytes_per_rep = len / num_reps;
debug_assert_eq!(len % num_reps, 0);
debug_assert!(
bytes_per_rep == 1
|| bytes_per_rep == 2
|| bytes_per_rep == 4
|| bytes_per_rep == 8
);
FullZipRepIndexDetails {
buf_position: *pos,
bytes_per_value: bytes_per_rep,
}
});
let value_decompressor = match layout.details {
Some(pb::full_zip_layout::Details::BitsPerValue(_)) => {
let decompressor = decompressors.create_fixed_per_value_decompressor(
layout.value_compression.as_ref().unwrap(),
)?;
PerValueDecompressor::Fixed(decompressor.into())
}
Some(pb::full_zip_layout::Details::BitsPerOffset(_)) => {
let decompressor = decompressors.create_variable_per_value_decompressor(
layout.value_compression.as_ref().unwrap(),
)?;
PerValueDecompressor::Variable(decompressor.into())
}
None => {
panic!("Full-zip layout must have a `details` field");
}
};
let ctrl_word_parser = ControlWordParser::new(
layout.bits_rep.try_into().unwrap(),
layout.bits_def.try_into().unwrap(),
);
let def_meaning = layout
.layers
.iter()
.map(|l| ProtobufUtils::repdef_layer_to_def_interp(*l))
.collect::<Vec<_>>();
let max_rep = def_meaning.iter().filter(|d| d.is_list()).count() as u16;
let max_visible_def = def_meaning
.iter()
.filter(|d| !d.is_list())
.map(|d| d.num_def_levels())
.sum();
let details = Arc::new(FullZipDecodeDetails {
value_decompressor,
def_meaning: def_meaning.into(),
ctrl_word_parser,
items_per_row,
max_rep,
max_visible_def,
});
Ok(Self {
data_buf_position,
rep_index,
details,
priority,
rows_in_page,
bits_per_offset,
})
}
/// Schedules indirectly by first fetching the data ranges from the
/// repetition index and then fetching the data
///
/// This approach is needed whenever we have a repetition index and
/// the data has a variable length.
#[allow(clippy::too_many_arguments)]
async fn indirect_schedule_ranges(
data_buffer_pos: u64,
item_ranges: Vec<Range<u64>>,
rep_index_ranges: Vec<Range<u64>>,
bytes_per_rep: u64,
io: Arc<dyn EncodingsIo>,
priority: u64,
bits_per_offset: u8,
details: Arc<FullZipDecodeDetails>,
) -> Result<Box<dyn StructuralPageDecoder>> {
let byte_ranges = io
.submit_request(rep_index_ranges, priority)
.await?
.into_iter()
.map(|d| LanceBuffer::from_bytes(d, 1))
.collect::<Vec<_>>();
let byte_ranges = LanceBuffer::concat(&byte_ranges);
let byte_ranges = ByteUnpacker::new(byte_ranges, bytes_per_rep as usize)
.chunks(2)
.into_iter()
.map(|mut c| {
let start = c.next().unwrap() + data_buffer_pos;
let end = c.next().unwrap() + data_buffer_pos;
start..end
})
.collect::<Vec<_>>();
let data = io.submit_request(byte_ranges, priority);
let data = data.await?;
let data = data
.into_iter()
.map(|d| LanceBuffer::from_bytes(d, 1))
.collect();
let num_rows = item_ranges.into_iter().map(|r| r.end - r.start).sum();
match &details.value_decompressor {
PerValueDecompressor::Fixed(decompressor) => {
let bits_per_value = decompressor.bits_per_value();
assert!(bits_per_value > 0);
if bits_per_value % 8 != 0 {
// Unlikely we will ever want this since full-zip values are so large the few bits we shave off don't
// make much difference.
unimplemented!("Bit-packed full-zip");
}
let bytes_per_value = bits_per_value / 8;
let total_bytes_per_value =
bytes_per_value as usize + details.ctrl_word_parser.bytes_per_word();
Ok(Box::new(FixedFullZipDecoder {
details,
data,
num_rows,
offset_in_current: 0,
bytes_per_value: bytes_per_value as usize,
total_bytes_per_value,
}) as Box<dyn StructuralPageDecoder>)
}
PerValueDecompressor::Variable(_decompressor) => {
// Variable full-zip
Ok(Box::new(VariableFullZipDecoder::new(
details,
data,
num_rows,
bits_per_offset,
bits_per_offset,
)))
}
}
}
/// Schedules ranges in the presence of a repetition index
fn schedule_ranges_rep(
&self,
ranges: &[Range<u64>],
io: &Arc<dyn EncodingsIo>,
rep_index: &FullZipRepIndexDetails,
) -> Result<BoxFuture<'static, Result<Box<dyn StructuralPageDecoder>>>> {
// Convert row ranges to item ranges (i.e. multiply by items per row)
let item_ranges = ranges
.iter()
.map(|r| r.start * self.details.items_per_row..r.end * self.details.items_per_row)
.collect::<Vec<_>>();
let rep_index_ranges = item_ranges
.iter()
.flat_map(|r| {
let first_val_start =
rep_index.buf_position + (r.start * rep_index.bytes_per_value);
let first_val_end = first_val_start + rep_index.bytes_per_value;
let last_val_start = rep_index.buf_position + (r.end * rep_index.bytes_per_value);
let last_val_end = last_val_start + rep_index.bytes_per_value;
[first_val_start..first_val_end, last_val_start..last_val_end]
})
.collect::<Vec<_>>();
// Create the decoder
Ok(Self::indirect_schedule_ranges(
self.data_buf_position,
item_ranges,
rep_index_ranges,
rep_index.bytes_per_value,
io.clone(),
self.priority,
self.bits_per_offset,
self.details.clone(),
)
.boxed())
}
// In the simple case there is no repetition and we just have large fixed-width
// rows of data. We can just map row ranges to byte ranges directly using the
// fixed-width of the data type.
fn schedule_ranges_simple(
&self,
ranges: &[Range<u64>],
io: &dyn EncodingsIo,
) -> Result<BoxFuture<'static, Result<Box<dyn StructuralPageDecoder>>>> {
// Convert row ranges to item ranges (i.e. multiply by items per row)
let num_rows = ranges.iter().map(|r| r.end - r.start).sum();
let item_ranges = ranges
.iter()
.map(|r| r.start * self.details.items_per_row..r.end * self.details.items_per_row)
.collect::<Vec<_>>();
let PerValueDecompressor::Fixed(decompressor) = &self.details.value_decompressor else {
unreachable!()
};
// Convert item ranges to byte ranges (i.e. multiply by bytes per item)
let bits_per_value = decompressor.bits_per_value();
assert_eq!(bits_per_value % 8, 0);
let bytes_per_value = bits_per_value / 8;
let bytes_per_cw = self.details.ctrl_word_parser.bytes_per_word();
let total_bytes_per_value = bytes_per_value + bytes_per_cw as u64;
let byte_ranges = item_ranges.iter().map(|r| {
debug_assert!(r.end <= self.rows_in_page * self.details.items_per_row);
let start = self.data_buf_position + r.start * total_bytes_per_value;
let end = self.data_buf_position + r.end * total_bytes_per_value;
start..end
});
// Request byte ranges
let data = io.submit_request(byte_ranges.collect(), self.priority);
let details = self.details.clone();
Ok(async move {
let data = data.await?;
let data = data
.into_iter()
.map(|d| LanceBuffer::from_bytes(d, 1))
.collect();
Ok(Box::new(FixedFullZipDecoder {
details,
data,
num_rows,
offset_in_current: 0,
bytes_per_value: bytes_per_value as usize,
total_bytes_per_value: total_bytes_per_value as usize,
}) as Box<dyn StructuralPageDecoder>)
}
.boxed())
}
}
impl StructuralPageScheduler for FullZipScheduler {
fn initialize<'a>(
&'a mut self,
_io: &Arc<dyn EncodingsIo>,
_: &Arc<FileMetadataCache>,
) -> BoxFuture<'a, Result<()>> {
std::future::ready(Ok(())).boxed()
}
fn schedule_ranges(
&self,
ranges: &[Range<u64>],
io: &Arc<dyn EncodingsIo>,
) -> Result<BoxFuture<'static, Result<Box<dyn StructuralPageDecoder>>>> {
if let Some(rep_index) = self.rep_index.as_ref() {
self.schedule_ranges_rep(ranges, io, rep_index)
} else {
self.schedule_ranges_simple(ranges, io.as_ref())
}
}
}
/// A decoder for full-zip encoded data when the data has a fixed-width
///
/// Here we need to unzip the control words from the values themselves and
/// then decompress the requested values.
///
/// We use a PerValueDecompressor because we will only be decompressing the
/// requested data. This decoder / scheduler does not do any read amplification.
#[derive(Debug)]
struct FixedFullZipDecoder {
details: Arc<FullZipDecodeDetails>,
data: VecDeque<LanceBuffer>,
offset_in_current: usize,
bytes_per_value: usize,
total_bytes_per_value: usize,
num_rows: u64,
}
impl FixedFullZipDecoder {
fn slice_next_task(&mut self, num_rows: u64) -> FullZipDecodeTaskItem {
debug_assert!(num_rows > 0);
let cur_buf = self.data.front_mut().unwrap();
let start = self.offset_in_current;
if self.details.ctrl_word_parser.has_rep() {
// This is a slightly slower path. In order to figure out where to split we need to
// examine the rep index so we can convert num_lists to num_rows
let mut rows_started = 0;
// We always need at least one value. Now loop through until we have passed num_rows
// values
let mut num_items = 0;
while self.offset_in_current < cur_buf.len() {
let control = self.details.ctrl_word_parser.parse_desc(
&cur_buf[self.offset_in_current..],
self.details.max_rep,
self.details.max_visible_def,
);
if control.is_new_row {
if rows_started == num_rows {
break;
}
rows_started += 1;
}
num_items += 1;
if control.is_visible {
self.offset_in_current += self.total_bytes_per_value;
} else {
self.offset_in_current += self.details.ctrl_word_parser.bytes_per_word();
}
}
let task_slice = cur_buf.slice_with_length(start, self.offset_in_current - start);
if self.offset_in_current == cur_buf.len() {
self.data.pop_front();
self.offset_in_current = 0;
}
FullZipDecodeTaskItem {
data: PerValueDataBlock::Fixed(FixedWidthDataBlock {
data: task_slice,
bits_per_value: self.bytes_per_value as u64 * 8,
num_values: num_items,
block_info: BlockInfo::new(),
}),
rows_in_buf: rows_started,
items_in_buf: num_items,
}
} else {
// If there's no repetition we can calculate the slicing point by just multiplying
// the number of rows by the total bytes per value
let cur_buf = self.data.front_mut().unwrap();
let bytes_avail = cur_buf.len() - self.offset_in_current;
let offset_in_cur = self.offset_in_current;
let bytes_needed = num_rows as usize * self.total_bytes_per_value;
let mut rows_taken = num_rows;
let task_slice = if bytes_needed >= bytes_avail {
self.offset_in_current = 0;
rows_taken = bytes_avail as u64 / self.total_bytes_per_value as u64;
self.data
.pop_front()
.unwrap()
.slice_with_length(offset_in_cur, bytes_avail)
} else {
self.offset_in_current += bytes_needed;
cur_buf.slice_with_length(offset_in_cur, bytes_needed)
};
FullZipDecodeTaskItem {
data: PerValueDataBlock::Fixed(FixedWidthDataBlock {
data: task_slice,
bits_per_value: self.bytes_per_value as u64 * 8,
num_values: rows_taken,
block_info: BlockInfo::new(),
}),
rows_in_buf: rows_taken,
items_in_buf: rows_taken,
}
}
}
}
impl StructuralPageDecoder for FixedFullZipDecoder {
fn drain(&mut self, num_rows: u64) -> Result<Box<dyn DecodePageTask>> {
let mut task_data = Vec::with_capacity(self.data.len());
let mut remaining = num_rows * self.details.items_per_row;
while remaining > 0 {
let task_item = self.slice_next_task(remaining);
remaining -= task_item.rows_in_buf;
task_data.push(task_item);
}
let num_items = task_data.iter().map(|td| td.items_in_buf).sum::<u64>() as usize;
Ok(Box::new(FixedFullZipDecodeTask {
details: self.details.clone(),
data: task_data,
bytes_per_value: self.bytes_per_value,
num_items,
}))
}
fn num_rows(&self) -> u64 {
self.num_rows
}
}
/// A decoder for full-zip encoded data when the data has a variable-width
///
/// Here we need to unzip the control words AND lengths from the values and
/// then decompress the requested values.
#[derive(Debug)]
struct VariableFullZipDecoder {
details: Arc<FullZipDecodeDetails>,
decompressor: Arc<dyn VariablePerValueDecompressor>,
data: LanceBuffer,
offsets: LanceBuffer,
rep: ScalarBuffer<u16>,
def: ScalarBuffer<u16>,
repdef_starts: Vec<usize>,
data_starts: Vec<usize>,
offset_starts: Vec<usize>,
visible_item_counts: Vec<u64>,
bits_per_offset: u8,
current_idx: usize,
num_rows: u64,
}
impl VariableFullZipDecoder {
fn new(
details: Arc<FullZipDecodeDetails>,
data: VecDeque<LanceBuffer>,
num_rows: u64,
in_bits_per_length: u8,
out_bits_per_offset: u8,
) -> Self {
let decompressor = match details.value_decompressor {
PerValueDecompressor::Variable(ref d) => d.clone(),
_ => unreachable!(),
};
assert_eq!(in_bits_per_length % 8, 0);
assert!(out_bits_per_offset == 32 || out_bits_per_offset == 64);
let mut decoder = Self {
details,
decompressor,
data: LanceBuffer::empty(),
offsets: LanceBuffer::empty(),
rep: LanceBuffer::empty().borrow_to_typed_slice(),
def: LanceBuffer::empty().borrow_to_typed_slice(),
bits_per_offset: out_bits_per_offset,
repdef_starts: Vec::with_capacity(num_rows as usize + 1),
data_starts: Vec::with_capacity(num_rows as usize + 1),
offset_starts: Vec::with_capacity(num_rows as usize + 1),
visible_item_counts: Vec::with_capacity(num_rows as usize + 1),
current_idx: 0,
num_rows,
};
// There's no great time to do this and this is the least worst time. If we don't unzip then
// we can't slice the data during the decode phase. This is because we need the offsets to be
// unpacked to know where the values start and end.
//
// We don't want to unzip on the decode thread because that is a single-threaded path
// We don't want to unzip on the scheduling thread because that is a single-threaded path
//
// Fortunately, we know variable length data will always be read indirectly and so we can do it
// here, which should be on the indirect thread. The primary disadvantage to doing it here is that
// we load all the data into memory and then throw it away only to load it all into memory again during
// the decode.
//
// There are some alternatives to investigate:
// - Instead of just reading the beginning and end of the rep index we could read the entire
// range in between. This will give us the break points that we need for slicing and won't increase
// the number of IOPs but it will mean we are doing more total I/O and we need to load the rep index
// even when doing a full scan.
// - We could force each decode task to do a full unzip of all the data. Each decode task now
// has to do more work but the work is all fused.
// - We could just try doing this work on the decode thread and see if it is a problem.
decoder.unzip(data, in_bits_per_length, out_bits_per_offset, num_rows);
decoder
}
unsafe fn parse_length(data: &[u8], bits_per_offset: u8) -> u64 {
match bits_per_offset {
8 => *data.get_unchecked(0) as u64,
16 => u16::from_le_bytes([*data.get_unchecked(0), *data.get_unchecked(1)]) as u64,
32 => u32::from_le_bytes([
*data.get_unchecked(0),
*data.get_unchecked(1),
*data.get_unchecked(2),
*data.get_unchecked(3),
]) as u64,
64 => u64::from_le_bytes([
*data.get_unchecked(0),
*data.get_unchecked(1),
*data.get_unchecked(2),
*data.get_unchecked(3),
*data.get_unchecked(4),
*data.get_unchecked(5),
*data.get_unchecked(6),
*data.get_unchecked(7),
]),
_ => unreachable!(),
}
}
fn unzip(
&mut self,
data: VecDeque<LanceBuffer>,
in_bits_per_length: u8,
out_bits_per_offset: u8,
num_rows: u64,
) {
// This undercounts if there are lists but, at this point, we don't really know how many items we have
let mut rep = Vec::with_capacity(num_rows as usize);
let mut def = Vec::with_capacity(num_rows as usize);
let bytes_cw = self.details.ctrl_word_parser.bytes_per_word() * num_rows as usize;
// This undercounts if there are lists
// It can also overcount if there are invisible items
let bytes_per_offset = out_bits_per_offset as usize / 8;
let bytes_offsets = bytes_per_offset * (num_rows as usize + 1);
let mut offsets_data = Vec::with_capacity(bytes_offsets);
let bytes_per_length = in_bits_per_length as usize / 8;
let bytes_lengths = bytes_per_length * num_rows as usize;
let bytes_data = data.iter().map(|d| d.len()).sum::<usize>();
// This overcounts since bytes_lengths and bytes_cw are undercounts
// It can also undercount if there are invisible items (hence the saturating_sub)
let mut unzipped_data =
Vec::with_capacity((bytes_data - bytes_cw).saturating_sub(bytes_lengths));
let mut current_offset = 0_u64;
let mut visible_item_count = 0_u64;
for databuf in data.into_iter() {
let mut databuf = databuf.as_ref();
while !databuf.is_empty() {
let data_start = unzipped_data.len();
let offset_start = offsets_data.len();
// We might have only-rep or only-def, neither, or both. They move at the same
// speed though so we only need one index into it
let repdef_start = rep.len().max(def.len());
// TODO: Kind of inefficient we parse the control word twice here
let ctrl_desc = self.details.ctrl_word_parser.parse_desc(
databuf,
self.details.max_rep,
self.details.max_visible_def,
);
self.details
.ctrl_word_parser
.parse(databuf, &mut rep, &mut def);
databuf = &databuf[self.details.ctrl_word_parser.bytes_per_word()..];
if ctrl_desc.is_new_row {
self.repdef_starts.push(repdef_start);
self.data_starts.push(data_start);
self.offset_starts.push(offset_start);
self.visible_item_counts.push(visible_item_count);
}
if ctrl_desc.is_visible {
visible_item_count += 1;
if ctrl_desc.is_valid_item {
// Safety: Data should have at least bytes_per_length bytes remaining
debug_assert!(databuf.len() >= bytes_per_length);
let length = unsafe { Self::parse_length(databuf, in_bits_per_length) };
match out_bits_per_offset {
32 => offsets_data
.extend_from_slice(&(current_offset as u32).to_le_bytes()),
64 => offsets_data.extend_from_slice(¤t_offset.to_le_bytes()),
_ => unreachable!(),
};
databuf = &databuf[bytes_per_offset..];
unzipped_data.extend_from_slice(&databuf[..length as usize]);
databuf = &databuf[length as usize..];
current_offset += length;
} else {
// Null items still get an offset
match out_bits_per_offset {
32 => offsets_data
.extend_from_slice(&(current_offset as u32).to_le_bytes()),
64 => offsets_data.extend_from_slice(¤t_offset.to_le_bytes()),
_ => unreachable!(),
}
}
}
}
}
self.repdef_starts.push(rep.len().max(def.len()));
self.data_starts.push(unzipped_data.len());
self.offset_starts.push(offsets_data.len());
self.visible_item_counts.push(visible_item_count);
match out_bits_per_offset {
32 => offsets_data.extend_from_slice(&(current_offset as u32).to_le_bytes()),
64 => offsets_data.extend_from_slice(¤t_offset.to_le_bytes()),
_ => unreachable!(),
};
self.rep = ScalarBuffer::from(rep);
self.def = ScalarBuffer::from(def);
self.data = LanceBuffer::Owned(unzipped_data);
self.offsets = LanceBuffer::Owned(offsets_data);
}
}
impl StructuralPageDecoder for VariableFullZipDecoder {
fn drain(&mut self, num_rows: u64) -> Result<Box<dyn DecodePageTask>> {
let start = self.current_idx;
let end = start + num_rows as usize;
// This might seem a little peculiar. We are returning the entire data for every single
// batch. This is because the offsets are relative to the start of the data. In other words
// imagine we have a data buffer that is 100 bytes long and the offsets are [0, 10, 20, 30, 40]
// and we return in batches of two. The second set of offsets will be [20, 30, 40].
//
// So either we pay for a copy to normalize the offsets or we just return the entire data buffer
// which is slightly cheaper.
let data = self.data.borrow_and_clone();
let offset_start = self.offset_starts[start];
let offset_end = self.offset_starts[end] + (self.bits_per_offset as usize / 8);
let offsets = self
.offsets
.slice_with_length(offset_start, offset_end - offset_start);
let repdef_start = self.repdef_starts[start];
let repdef_end = self.repdef_starts[end];
let rep = if self.rep.is_empty() {
self.rep.clone()
} else {
self.rep.slice(repdef_start, repdef_end - repdef_start)
};
let def = if self.def.is_empty() {
self.def.clone()
} else {
self.def.slice(repdef_start, repdef_end - repdef_start)
};
let visible_item_counts_start = self.visible_item_counts[start];
let visible_item_counts_end = self.visible_item_counts[end];
let num_visible_items = visible_item_counts_end - visible_item_counts_start;
self.current_idx += num_rows as usize;
Ok(Box::new(VariableFullZipDecodeTask {
details: self.details.clone(),
decompressor: self.decompressor.clone(),
data,
offsets,
bits_per_offset: self.bits_per_offset,
num_visible_items,
rep,
def,
}))
}
fn num_rows(&self) -> u64 {
self.num_rows
}
}
#[derive(Debug)]
struct VariableFullZipDecodeTask {
details: Arc<FullZipDecodeDetails>,
decompressor: Arc<dyn VariablePerValueDecompressor>,
data: LanceBuffer,
offsets: LanceBuffer,
bits_per_offset: u8,
num_visible_items: u64,
rep: ScalarBuffer<u16>,
def: ScalarBuffer<u16>,
}
impl DecodePageTask for VariableFullZipDecodeTask {
fn decode(self: Box<Self>) -> Result<DecodedPage> {
let block = VariableWidthBlock {
data: self.data,
offsets: self.offsets,
bits_per_offset: self.bits_per_offset,
num_values: self.num_visible_items,
block_info: BlockInfo::new(),
};
let decomopressed = self.decompressor.decompress(block)?;
let rep = self.rep.to_vec();
let def = self.def.to_vec();
let unraveler =
RepDefUnraveler::new(Some(rep), Some(def), self.details.def_meaning.clone());
Ok(DecodedPage {
data: decomopressed,
repdef: unraveler,
})
}
}
#[derive(Debug)]
struct FullZipDecodeTaskItem {
data: PerValueDataBlock,
rows_in_buf: u64,
items_in_buf: u64,
}
/// A task to unzip and decompress full-zip encoded data when that data
/// has a fixed-width.
#[derive(Debug)]
struct FixedFullZipDecodeTask {
details: Arc<FullZipDecodeDetails>,
data: Vec<FullZipDecodeTaskItem>,
num_items: usize,
bytes_per_value: usize,
}
impl DecodePageTask for FixedFullZipDecodeTask {
fn decode(self: Box<Self>) -> Result<DecodedPage> {
// Multiply by 2 to make a stab at the size of the output buffer (which will be decompressed and thus bigger)
let estimated_size_bytes = self
.data
.iter()
.map(|task_item| task_item.data.data_size() as usize)
.sum::<usize>()
* 2;
let mut data_builder =
DataBlockBuilder::with_capacity_estimate(estimated_size_bytes as u64);
if self.details.ctrl_word_parser.bytes_per_word() == 0 {
// Fast path, no need to unzip because there is no rep/def
//
// We decompress each buffer and add it to our output buffer
for task_item in self.data.into_iter() {
let PerValueDataBlock::Fixed(fixed_data) = task_item.data else {
unreachable!()
};
let PerValueDecompressor::Fixed(decompressor) = &self.details.value_decompressor
else {
unreachable!()
};
debug_assert_eq!(fixed_data.num_values, task_item.items_in_buf);
let decompressed = decompressor.decompress(fixed_data)?;
data_builder.append(&decompressed, 0..task_item.items_in_buf);
}
let unraveler = RepDefUnraveler::new(None, None, self.details.def_meaning.clone());
Ok(DecodedPage {
data: data_builder.finish(),
repdef: unraveler,
})
} else {
// Slow path, unzipping needed
let mut rep = Vec::with_capacity(self.num_items);
let mut def = Vec::with_capacity(self.num_items);
for task_item in self.data.into_iter() {
let PerValueDataBlock::Fixed(fixed_data) = task_item.data else {
unreachable!()
};
let mut buf_slice = fixed_data.data.as_ref();
// We will be unzipping repdef in to `rep` and `def` and the
// values into `values` (which contains the compressed values)
let mut values = Vec::with_capacity(
fixed_data.data.len()
- (self.details.ctrl_word_parser.bytes_per_word()
* task_item.items_in_buf as usize),
);
let mut visible_items = 0;
for _ in 0..task_item.items_in_buf {
// Extract rep/def
self.details
.ctrl_word_parser
.parse(buf_slice, &mut rep, &mut def);
buf_slice = &buf_slice[self.details.ctrl_word_parser.bytes_per_word()..];
let is_visible = def
.last()
.map(|d| *d <= self.details.max_visible_def)
.unwrap_or(true);
if is_visible {
// Extract value
values.extend_from_slice(buf_slice[..self.bytes_per_value].as_ref());
buf_slice = &buf_slice[self.bytes_per_value..];
visible_items += 1;
}
}
// Finally, we decompress the values and add them to our output buffer
let values_buf = LanceBuffer::Owned(values);
let fixed_data = FixedWidthDataBlock {
bits_per_value: self.bytes_per_value as u64 * 8,
block_info: BlockInfo::new(),
data: values_buf,
num_values: visible_items,
};
let PerValueDecompressor::Fixed(decompressor) = &self.details.value_decompressor
else {
unreachable!()
};
let decompressed = decompressor.decompress(fixed_data)?;
data_builder.append(&decompressed, 0..visible_items);
}
let repetition = if rep.is_empty() { None } else { Some(rep) };
let definition = if def.is_empty() { None } else { Some(def) };
let unraveler =
RepDefUnraveler::new(repetition, definition, self.details.def_meaning.clone());
let data = data_builder.finish();
Ok(DecodedPage {
data,
repdef: unraveler,
})
}
}
}
#[derive(Debug)]
struct StructuralPrimitiveFieldSchedulingJob<'a> {
scheduler: &'a StructuralPrimitiveFieldScheduler,
ranges: Vec<Range<u64>>,
page_idx: usize,
range_idx: usize,
range_offset: u64,
global_row_offset: u64,
}
impl<'a> StructuralPrimitiveFieldSchedulingJob<'a> {
pub fn new(scheduler: &'a StructuralPrimitiveFieldScheduler, ranges: Vec<Range<u64>>) -> Self {
Self {
scheduler,
ranges,
page_idx: 0,
range_idx: 0,
range_offset: 0,
global_row_offset: 0,
}
}
}
impl StructuralSchedulingJob for StructuralPrimitiveFieldSchedulingJob<'_> {
fn schedule_next(
&mut self,
context: &mut SchedulerContext,
) -> Result<Option<ScheduledScanLine>> {
if self.range_idx >= self.ranges.len() {
return Ok(None);
}
// Get our current range
let mut range = self.ranges[self.range_idx].clone();
range.start += self.range_offset;
let priority = range.start;
let mut cur_page = &self.scheduler.page_schedulers[self.page_idx];
trace!(
"Current range is {:?} and current page has {} rows",
range,
cur_page.num_rows
);
// Skip entire pages until we have some overlap with our next range
while cur_page.num_rows + self.global_row_offset <= range.start {
self.global_row_offset += cur_page.num_rows;
self.page_idx += 1;
trace!("Skipping entire page of {} rows", cur_page.num_rows);
cur_page = &self.scheduler.page_schedulers[self.page_idx];
}
// Now the cur_page has overlap with range. Continue looping through ranges
// until we find a range that exceeds the current page
let mut ranges_in_page = Vec::new();
while cur_page.num_rows + self.global_row_offset > range.start {
range.start = range.start.max(self.global_row_offset);
let start_in_page = range.start - self.global_row_offset;
let end_in_page = start_in_page + (range.end - range.start);
let end_in_page = end_in_page.min(cur_page.num_rows);
let last_in_range = (end_in_page + self.global_row_offset) >= range.end;
ranges_in_page.push(start_in_page..end_in_page);
if last_in_range {
self.range_idx += 1;
if self.range_idx == self.ranges.len() {
break;
}
range = self.ranges[self.range_idx].clone();
} else {
break;
}
}
let num_rows_in_next = ranges_in_page.iter().map(|r| r.end - r.start).sum();
trace!(
"Scheduling {} rows across {} ranges from page with {} rows (priority={}, column_index={}, page_index={})",
num_rows_in_next,
ranges_in_page.len(),
cur_page.num_rows,
priority,
self.scheduler.column_index,
cur_page.page_index,
);
self.global_row_offset += cur_page.num_rows;
self.page_idx += 1;
let page_decoder = cur_page
.scheduler
.schedule_ranges(&ranges_in_page, context.io())?;
let cur_path = context.current_path();
let page_index = cur_page.page_index;
let unloaded_page = async move {
let page_decoder = page_decoder.await?;
Ok(LoadedPage {
decoder: page_decoder,
path: cur_path,
page_index,
})
}
.boxed();
Ok(Some(ScheduledScanLine {
decoders: vec![MessageType::UnloadedPage(UnloadedPage(unloaded_page))],
rows_scheduled: num_rows_in_next,
}))
}
}
#[derive(Debug)]
struct PageInfoAndScheduler {
page_index: usize,
num_rows: u64,
scheduler: Box<dyn StructuralPageScheduler>,
}
/// A scheduler for a leaf node
///
/// Here we look at the layout of the various pages and delegate scheduling to a scheduler
/// appropriate for the layout of the page.
#[derive(Debug)]
pub struct StructuralPrimitiveFieldScheduler {
page_schedulers: Vec<PageInfoAndScheduler>,
column_index: u32,
}
impl StructuralPrimitiveFieldScheduler {
pub fn try_new(
column_info: &ColumnInfo,
items_per_row: u64,
decompressors: &dyn DecompressorStrategy,
) -> Result<Self> {
let page_schedulers = column_info
.page_infos
.iter()
.enumerate()
.map(|(page_index, page_info)| {
Self::page_info_to_scheduler(
page_info,
page_index,
column_info.index as usize,
decompressors,
items_per_row,
)
})
.collect::<Result<Vec<_>>>()?;
Ok(Self {
page_schedulers,
column_index: column_info.index,
})
}
fn page_info_to_scheduler(
page_info: &PageInfo,
page_index: usize,
column_index: usize,
decompressors: &dyn DecompressorStrategy,
items_per_row: u64,
) -> Result<PageInfoAndScheduler> {
let scheduler: Box<dyn StructuralPageScheduler> =
match page_info.encoding.as_structural().layout.as_ref() {
Some(pb::page_layout::Layout::MiniBlockLayout(mini_block)) => {
Box::new(MiniBlockScheduler::try_new(
&page_info.buffer_offsets_and_sizes,
page_info.priority,
mini_block.num_items,
items_per_row,
page_index,
column_index,
mini_block,
decompressors,
)?)
}
Some(pb::page_layout::Layout::FullZipLayout(full_zip)) => {
Box::new(FullZipScheduler::try_new(
&page_info.buffer_offsets_and_sizes,
page_info.priority,
page_info.num_rows,
items_per_row,
full_zip,
decompressors,
/*bits_per_offset=*/ 32,
)?)
}
Some(pb::page_layout::Layout::AllNullLayout(all_null)) => {
let def_meaning = all_null
.layers
.iter()
.map(|l| ProtobufUtils::repdef_layer_to_def_interp(*l))
.collect::<Vec<_>>();
if def_meaning.len() == 1
&& def_meaning[0] == DefinitionInterpretation::NullableItem
{
Box::new(SimpleAllNullScheduler::default())
as Box<dyn StructuralPageScheduler>
} else {
Box::new(ComplexAllNullScheduler::new(
page_info.buffer_offsets_and_sizes.clone(),
def_meaning.into(),
items_per_row,
)) as Box<dyn StructuralPageScheduler>
}
}
_ => todo!(),
};
Ok(PageInfoAndScheduler {
page_index,
num_rows: page_info.num_rows,
scheduler,
})
}
}
impl StructuralFieldScheduler for StructuralPrimitiveFieldScheduler {
fn initialize<'a>(
&'a mut self,
_filter: &'a FilterExpression,
context: &'a SchedulerContext,
) -> BoxFuture<'a, Result<()>> {
let page_init = self
.page_schedulers
.iter_mut()
.map(|s| s.scheduler.initialize(context.io(), context.cache()))
.collect::<FuturesUnordered<_>>();
async move {
page_init.try_collect::<Vec<_>>().await?;
Ok(())
}
.boxed()
}
fn schedule_ranges<'a>(
&'a self,
ranges: &[Range<u64>],
_filter: &FilterExpression,
) -> Result<Box<dyn StructuralSchedulingJob + 'a>> {
let ranges = ranges.to_vec();
Ok(Box::new(StructuralPrimitiveFieldSchedulingJob::new(
self, ranges,
)))
}
}
pub struct PrimitiveFieldDecoder {
data_type: DataType,
unloaded_physical_decoder: Option<BoxFuture<'static, Result<Box<dyn PrimitivePageDecoder>>>>,
physical_decoder: Option<Arc<dyn PrimitivePageDecoder>>,
should_validate: bool,
num_rows: u64,
rows_drained: u64,
column_index: u32,
page_index: u32,
}
impl PrimitiveFieldDecoder {
pub fn new_from_data(
physical_decoder: Arc<dyn PrimitivePageDecoder>,
data_type: DataType,
num_rows: u64,
should_validate: bool,
) -> Self {
Self {
data_type,
unloaded_physical_decoder: None,
physical_decoder: Some(physical_decoder),
should_validate,
num_rows,
rows_drained: 0,
column_index: u32::MAX,
page_index: u32::MAX,
}
}
}
impl Debug for PrimitiveFieldDecoder {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("PrimitiveFieldDecoder")
.field("data_type", &self.data_type)
.field("num_rows", &self.num_rows)
.field("rows_drained", &self.rows_drained)
.finish()
}
}
struct PrimitiveFieldDecodeTask {
rows_to_skip: u64,
rows_to_take: u64,
should_validate: bool,
physical_decoder: Arc<dyn PrimitivePageDecoder>,
data_type: DataType,
}
impl DecodeArrayTask for PrimitiveFieldDecodeTask {
fn decode(self: Box<Self>) -> Result<ArrayRef> {
let block = self
.physical_decoder
.decode(self.rows_to_skip, self.rows_to_take)?;
let array = make_array(block.into_arrow(self.data_type.clone(), self.should_validate)?);
// This is a bit of a hack to work around https://github.com/apache/arrow-rs/issues/6302
//
// We change from nulls-in-dictionary (storage format) to nulls-in-indices (arrow-rs preferred
// format)
//
// The calculation of logical_nulls is not free and would be good to avoid in the future
if let DataType::Dictionary(_, _) = self.data_type {
let dict = array.as_any_dictionary();
if let Some(nulls) = array.logical_nulls() {
let new_indices = dict.keys().to_data();
let new_array = make_array(
new_indices
.into_builder()
.nulls(Some(nulls))
.add_child_data(dict.values().to_data())
.data_type(dict.data_type().clone())
.build()?,
);
return Ok(new_array);
}
}
Ok(array)
}
}
impl LogicalPageDecoder for PrimitiveFieldDecoder {
// TODO: In the future, at some point, we may consider partially waiting for primitive pages by
// breaking up large I/O into smaller I/O as a way to accelerate the "time-to-first-decode"
fn wait_for_loaded(&mut self, loaded_need: u64) -> BoxFuture<Result<()>> {
log::trace!(
"primitive wait for more than {} rows on column {} and page {} (page has {} rows)",
loaded_need,
self.column_index,
self.page_index,
self.num_rows
);
async move {
let physical_decoder = self.unloaded_physical_decoder.take().unwrap().await?;
self.physical_decoder = Some(Arc::from(physical_decoder));
Ok(())
}
.boxed()
}
fn drain(&mut self, num_rows: u64) -> Result<NextDecodeTask> {
if self.physical_decoder.as_ref().is_none() {
return Err(lance_core::Error::Internal {
message: format!("drain was called on primitive field decoder for data type {} on column {} but the decoder was never awaited", self.data_type, self.column_index),
location: location!(),
});
}
let rows_to_skip = self.rows_drained;
let rows_to_take = num_rows;
self.rows_drained += rows_to_take;
let task = Box::new(PrimitiveFieldDecodeTask {
rows_to_skip,
rows_to_take,
should_validate: self.should_validate,
physical_decoder: self.physical_decoder.as_ref().unwrap().clone(),
data_type: self.data_type.clone(),
});
Ok(NextDecodeTask {
task,
num_rows: rows_to_take,
has_more: self.rows_drained != self.num_rows,
})
}
fn rows_loaded(&self) -> u64 {
if self.unloaded_physical_decoder.is_some() {
0
} else {
self.num_rows
}
}
fn rows_drained(&self) -> u64 {
if self.unloaded_physical_decoder.is_some() {
0
} else {
self.rows_drained
}
}
fn num_rows(&self) -> u64 {
self.num_rows
}
fn data_type(&self) -> &DataType {
&self.data_type
}
}
/// Takes the output from several pages decoders and
/// concatenates them.
#[derive(Debug)]
pub struct StructuralCompositeDecodeArrayTask {
tasks: Vec<Box<dyn DecodePageTask>>,
items_type: DataType,
fsl_fields: Arc<[Arc<ArrowField>]>,
should_validate: bool,
}
impl StructuralCompositeDecodeArrayTask {
fn restore_validity(
array: Arc<dyn Array>,
unraveler: &mut CompositeRepDefUnraveler,
) -> Arc<dyn Array> {
let validity = unraveler.unravel_validity(array.len());
let Some(validity) = validity else {
return array;
};
if array.data_type() == &DataType::Null {
// We unravel from a null array but we don't add the null buffer because arrow-rs doesn't like it
return array;
}
assert_eq!(validity.len(), array.len());
// SAFETY: We've should have already asserted the buffers are all valid, we are just
// adding null buffers to the array here
make_array(unsafe {
array
.to_data()
.into_builder()
.nulls(Some(validity))
.build_unchecked()
})
}
fn restore_fsl(
array: Arc<dyn Array>,
unraveler: &mut CompositeRepDefUnraveler,
fsl_fields: Arc<[Arc<ArrowField>]>,
) -> Arc<dyn Array> {
let mut array = array;
for fsl_field in fsl_fields.iter().rev() {
let DataType::FixedSizeList(child_field, dimension) = fsl_field.data_type() else {
unreachable!()
};
let fsl_num_values = array.len() / *dimension as usize;
let fsl_validity = unraveler.unravel_fsl_validity(fsl_num_values, *dimension as usize);
array = Arc::new(FixedSizeListArray::new(
child_field.clone(),
*dimension,
array,
fsl_validity,
));
}
array
}
}
impl StructuralDecodeArrayTask for StructuralCompositeDecodeArrayTask {
fn decode(self: Box<Self>) -> Result<DecodedArray> {
let mut arrays = Vec::with_capacity(self.tasks.len());
let mut unravelers = Vec::with_capacity(self.tasks.len());
for task in self.tasks {
let decoded = task.decode()?;
unravelers.push(decoded.repdef);
let array = make_array(
decoded
.data
.into_arrow(self.items_type.clone(), self.should_validate)?,
);
arrays.push(array);
}
let array_refs = arrays.iter().map(|arr| arr.as_ref()).collect::<Vec<_>>();
let array = arrow_select::concat::concat(&array_refs)?;
let mut repdef = CompositeRepDefUnraveler::new(unravelers);
let array = Self::restore_validity(array, &mut repdef);
let array = Self::restore_fsl(array, &mut repdef, self.fsl_fields);
Ok(DecodedArray { array, repdef })
}
}
#[derive(Debug)]
pub struct StructuralPrimitiveFieldDecoder {
field: Arc<ArrowField>,
items_type: DataType,
fsl_fields: Arc<[Arc<ArrowField>]>,
page_decoders: VecDeque<Box<dyn StructuralPageDecoder>>,
should_validate: bool,
rows_drained_in_current: u64,
}
impl StructuralPrimitiveFieldDecoder {
fn flatten_field_helper(
field: &Arc<ArrowField>,
mut fields: Vec<Arc<ArrowField>>,
) -> (Arc<[Arc<ArrowField>]>, &DataType) {
match field.data_type() {
DataType::FixedSizeList(inner, _) => {
fields.push(field.clone());
Self::flatten_field_helper(inner, fields)
}
_ => {
let fields = fields.into();
(fields, field.data_type())
}
}
}
fn flatten_field(field: &Arc<ArrowField>) -> (Arc<[Arc<ArrowField>]>, &DataType) {
Self::flatten_field_helper(field, Vec::default())
}
pub fn new(field: &Arc<ArrowField>, should_validate: bool) -> Self {
let (fsl_fields, items_type) = Self::flatten_field(field);
Self {
field: field.clone(),
items_type: items_type.clone(),
fsl_fields,
page_decoders: VecDeque::new(),
should_validate,
rows_drained_in_current: 0,
}
}
}
impl StructuralFieldDecoder for StructuralPrimitiveFieldDecoder {
fn accept_page(&mut self, child: LoadedPage) -> Result<()> {
assert!(child.path.is_empty());
self.page_decoders.push_back(child.decoder);
Ok(())
}
fn drain(&mut self, num_rows: u64) -> Result<Box<dyn StructuralDecodeArrayTask>> {
let mut remaining = num_rows;
let mut tasks = Vec::new();
while remaining > 0 {
let cur_page = self.page_decoders.front_mut().unwrap();
let num_in_page = cur_page.num_rows() - self.rows_drained_in_current;
let to_take = num_in_page.min(remaining);
let task = cur_page.drain(to_take)?;
tasks.push(task);
if to_take == num_in_page {
self.page_decoders.pop_front();
self.rows_drained_in_current = 0;
} else {
self.rows_drained_in_current += to_take;
}
remaining -= to_take;
}
Ok(Box::new(StructuralCompositeDecodeArrayTask {
tasks,
items_type: self.items_type.clone(),
should_validate: self.should_validate,
fsl_fields: self.fsl_fields.clone(),
}))
}
fn data_type(&self) -> &DataType {
self.field.data_type()
}
}
#[derive(Debug)]
pub struct AccumulationQueue {
cache_bytes: u64,
keep_original_array: bool,
buffered_arrays: Vec<ArrayRef>,
current_bytes: u64,
// Row number of the first item in buffered_arrays, reset on flush
row_number: u64,
// Number of top level rows represented in buffered_arrays, reset on flush
num_rows: u64,
// This is only for logging / debugging purposes
column_index: u32,
}
impl AccumulationQueue {
pub fn new(cache_bytes: u64, column_index: u32, keep_original_array: bool) -> Self {
Self {
cache_bytes,
buffered_arrays: Vec::new(),
current_bytes: 0,
column_index,
keep_original_array,
row_number: u64::MAX,
num_rows: 0,
}
}
/// Adds an array to the queue, if there is enough data then the queue is flushed
/// and returned
pub fn insert(
&mut self,
array: ArrayRef,
row_number: u64,
num_rows: u64,
) -> Option<(Vec<ArrayRef>, u64, u64)> {
if self.row_number == u64::MAX {
self.row_number = row_number;
}
self.num_rows += num_rows;
self.current_bytes += array.get_array_memory_size() as u64;
if self.current_bytes > self.cache_bytes {
debug!(
"Flushing column {} page of size {} bytes (unencoded)",
self.column_index, self.current_bytes
);
// Push into buffered_arrays without copy since we are about to flush anyways
self.buffered_arrays.push(array);
self.current_bytes = 0;
let row_number = self.row_number;
self.row_number = u64::MAX;
let num_rows = self.num_rows;
self.num_rows = 0;
Some((
std::mem::take(&mut self.buffered_arrays),
row_number,
num_rows,
))
} else {
trace!(
"Accumulating data for column {}. Now at {} bytes",
self.column_index,
self.current_bytes
);
if self.keep_original_array {
self.buffered_arrays.push(array);
} else {
self.buffered_arrays.push(deep_copy_array(array.as_ref()))
}
None
}
}
pub fn flush(&mut self) -> Option<(Vec<ArrayRef>, u64, u64)> {
if self.buffered_arrays.is_empty() {
trace!(
"No final flush since no data at column {}",
self.column_index
);
None
} else {
trace!(
"Final flush of column {} which has {} bytes",
self.column_index,
self.current_bytes
);
self.current_bytes = 0;
let row_number = self.row_number;
self.row_number = u64::MAX;
let num_rows = self.num_rows;
self.num_rows = 0;
Some((
std::mem::take(&mut self.buffered_arrays),
row_number,
num_rows,
))
}
}
}
pub struct PrimitiveFieldEncoder {
accumulation_queue: AccumulationQueue,
array_encoding_strategy: Arc<dyn ArrayEncodingStrategy>,
column_index: u32,
field: Field,
max_page_bytes: u64,
}
impl PrimitiveFieldEncoder {
pub fn try_new(
options: &EncodingOptions,
array_encoding_strategy: Arc<dyn ArrayEncodingStrategy>,
column_index: u32,
field: Field,
) -> Result<Self> {
Ok(Self {
accumulation_queue: AccumulationQueue::new(
options.cache_bytes_per_column,
column_index,
options.keep_original_array,
),
column_index,
max_page_bytes: options.max_page_bytes,
array_encoding_strategy,
field,
})
}
fn create_encode_task(&mut self, arrays: Vec<ArrayRef>) -> Result<EncodeTask> {
let encoder = self
.array_encoding_strategy
.create_array_encoder(&arrays, &self.field)?;
let column_idx = self.column_index;
let data_type = self.field.data_type();
Ok(tokio::task::spawn(async move {
let num_values = arrays.iter().map(|arr| arr.len() as u64).sum();
let data = DataBlock::from_arrays(&arrays, num_values);
let mut buffer_index = 0;
let array = encoder.encode(data, &data_type, &mut buffer_index)?;
let (data, description) = array.into_buffers();
Ok(EncodedPage {
data,
description: PageEncoding::Legacy(description),
num_rows: num_values,
column_idx,
row_number: 0, // legacy encoders do not use
})
})
.map(|res_res| res_res.unwrap())
.boxed())
}
// Creates an encode task, consuming all buffered data
fn do_flush(&mut self, arrays: Vec<ArrayRef>) -> Result<Vec<EncodeTask>> {
if arrays.len() == 1 {
let array = arrays.into_iter().next().unwrap();
let size_bytes = array.get_buffer_memory_size();
let num_parts = bit_util::ceil(size_bytes, self.max_page_bytes as usize);
// Can't slice it finer than 1 page per row
let num_parts = num_parts.min(array.len());
if num_parts <= 1 {
// One part and it fits in a page
Ok(vec![self.create_encode_task(vec![array])?])
} else {
// One part and it needs to be sliced into multiple pages
// This isn't perfect (items in the array might not all have the same size)
// but it's a reasonable stab for now)
let mut tasks = Vec::with_capacity(num_parts);
let mut offset = 0;
let part_size = bit_util::ceil(array.len(), num_parts);
for _ in 0..num_parts {
let avail = array.len() - offset;
let chunk_size = avail.min(part_size);
let part = array.slice(offset, chunk_size);
let task = self.create_encode_task(vec![part])?;
tasks.push(task);
offset += chunk_size;
}
Ok(tasks)
}
} else {
// Multiple parts that (presumably) all fit in a page
//
// TODO: Could check here if there are any jumbo parts in the mix that need splitting
Ok(vec![self.create_encode_task(arrays)?])
}
}
}
impl FieldEncoder for PrimitiveFieldEncoder {
// Buffers data, if there is enough to write a page then we create an encode task
fn maybe_encode(
&mut self,
array: ArrayRef,
_external_buffers: &mut OutOfLineBuffers,
_repdef: RepDefBuilder,
row_number: u64,
num_rows: u64,
) -> Result<Vec<EncodeTask>> {
if let Some(arrays) = self.accumulation_queue.insert(array, row_number, num_rows) {
Ok(self.do_flush(arrays.0)?)
} else {
Ok(vec![])
}
}
// If there is any data left in the buffer then create an encode task from it
fn flush(&mut self, _external_buffers: &mut OutOfLineBuffers) -> Result<Vec<EncodeTask>> {
if let Some(arrays) = self.accumulation_queue.flush() {
Ok(self.do_flush(arrays.0)?)
} else {
Ok(vec![])
}
}
fn num_columns(&self) -> u32 {
1
}
fn finish(
&mut self,
_external_buffers: &mut OutOfLineBuffers,
) -> BoxFuture<'_, Result<Vec<crate::encoder::EncodedColumn>>> {
std::future::ready(Ok(vec![EncodedColumn::default()])).boxed()
}
}
/// The serialized representation of full-zip data
struct SerializedFullZip {
/// The zipped values buffer
values: LanceBuffer,
/// The repetition index (only present if there is repetition)
repetition_index: Option<LanceBuffer>,
}
// We align and pad mini-blocks to 8 byte boundaries for two reasons. First,
// to allow us to store a chunk size in 12 bits.
//
// If we directly record the size in bytes with 12 bits we would be limited to
// 4KiB which is too small. Since we know each mini-block consists of 8 byte
// words we can store the # of words instead which gives us 32KiB. We want
// at least 24KiB so we can handle even the worst case of
// - 4Ki values compressed into an 8186 byte buffer
// - 4 bytes to describe rep & def lengths
// - 16KiB of rep & def buffer (this will almost never happen but life is easier if we
// plan for it)
//
// Second, each chunk in a mini-block is aligned to 8 bytes. This allows multi-byte
// values like offsets to be stored in a mini-block and safely read back out. It also
// helps ensure zero-copy reads in cases where zero-copy is possible (e.g. no decoding
// needed).
//
// Note: by "aligned to 8 bytes" we mean BOTH "aligned to 8 bytes from the start of
// the page" and "aligned to 8 bytes from the start of the file."
const MINIBLOCK_ALIGNMENT: usize = 8;
const MINIBLOCK_MAX_PADDING: usize = MINIBLOCK_ALIGNMENT - 1;
/// An encoder for primitive (leaf) arrays
///
/// This encoder is fairly complicated and follows a number of paths depending
/// on the data.
///
/// First, we convert the validity & offsets information into repetition and
/// definition levels. Then we compress the data itself into a single buffer.
///
/// If the data is narrow then we encode the data in small chunks (each chunk
/// should be a few disk sectors and contains a buffer of repetition, a buffer
/// of definition, and a buffer of value data). This approach is called
/// "mini-block". These mini-blocks are stored into a single data buffer.
///
/// If the data is wide then we zip together the repetition and definition value
/// with the value data into a single buffer. This approach is called "zipped".
///
/// If there is any repetition information then we create a repetition index (TODO)
///
/// In addition, the compression process may create zero or more metadata buffers.
/// For example, a dictionary compression will create dictionary metadata. Any
/// mini-block approach has a metadata buffer of block sizes. This metadata is
/// stored in a separate buffer on disk and read at initialization time.
///
/// TODO: We should concatenate metadata buffers from all pages into a single buffer
/// at (roughly) the end of the file so there is, at most, one read per column of
/// metadata per file.
pub struct PrimitiveStructuralEncoder {
// Accumulates arrays until we have enough data to justify a disk page
accumulation_queue: AccumulationQueue,
accumulated_repdefs: Vec<RepDefBuilder>,
// The compression strategy we will use to compress the data
compression_strategy: Arc<dyn CompressionStrategy>,
column_index: u32,
field: Field,
encoding_metadata: Arc<HashMap<String, String>>,
}
impl PrimitiveStructuralEncoder {
pub fn try_new(
options: &EncodingOptions,
compression_strategy: Arc<dyn CompressionStrategy>,
column_index: u32,
field: Field,
encoding_metadata: Arc<HashMap<String, String>>,
) -> Result<Self> {
Ok(Self {
accumulation_queue: AccumulationQueue::new(
options.cache_bytes_per_column,
column_index,
options.keep_original_array,
),
accumulated_repdefs: Vec::new(),
column_index,
compression_strategy,
field,
encoding_metadata,
})
}
// TODO: This is a heuristic we may need to tune at some point
//
// As data gets narrow then the "zipping" process gets too expensive
// and we prefer mini-block
// As data gets wide then the # of values per block shrinks (very wide)
// data doesn't even fit in a mini-block and the block overhead gets
// too large and we prefer zipped.
fn is_narrow(data_block: &DataBlock) -> bool {
const MINIBLOCK_MAX_BYTE_LENGTH_PER_VALUE: u64 = 256;
if let Some(max_len_array) = data_block.get_stat(Stat::MaxLength) {
let max_len_array = max_len_array
.as_any()
.downcast_ref::<PrimitiveArray<UInt64Type>>()
.unwrap();
if max_len_array.value(0) < MINIBLOCK_MAX_BYTE_LENGTH_PER_VALUE {
return true;
}
}
false
}
fn prefers_miniblock(
data_block: &DataBlock,
encoding_metadata: &HashMap<String, String>,
) -> bool {
// If the user specifically requested miniblock then use it
if let Some(user_requested) = encoding_metadata.get(STRUCTURAL_ENCODING_META_KEY) {
return user_requested.to_lowercase() == STRUCTURAL_ENCODING_MINIBLOCK;
}
// Otherwise only use miniblock if it is narrow
Self::is_narrow(data_block)
}
fn prefers_fullzip(encoding_metadata: &HashMap<String, String>) -> bool {
// Fullzip is the backup option so the only reason we wouldn't use it is if the
// user specifically requested not to use it (in which case we're probably going
// to emit an error)
if let Some(user_requested) = encoding_metadata.get(STRUCTURAL_ENCODING_META_KEY) {
return user_requested.to_lowercase() == STRUCTURAL_ENCODING_FULLZIP;
}
true
}
// Converts value data, repetition levels, and definition levels into a single
// buffer of mini-blocks. In addition, creates a buffer of mini-block metadata
// which tells us the size of each block. Finally, if repetition is present then
// we also create a buffer for the repetition index.
//
// Each chunk is serialized as:
// | rep_len (2 bytes) | def_len (2 bytes) | values_len (2 bytes) | rep | P1 | def | P2 | values | P3 |
//
// P1 - Up to 1 padding byte to ensure `def` is 2-byte aligned
// P2 - Up to 7 padding bytes to ensure `values` is 8-byte aligned
// P3 - Up to 7 padding bytes to ensure the chunk is a multiple of 8 bytes (this also ensures
// that the next `chunk` is 8-byte aligned)
//
// rep is guaranteed to be 2-byte aligned
// def is guaranteed to be 2-byte aligned
// values is guaranteed to be 8-byte aligned
// rep_len, def_len, and values_len are guaranteed to be 2-byte aligned but this shouldn't matter.
//
// Each block has a u16 word of metadata. The upper 12 bits contain 1/6 the
// # of bytes in the block (if the block does not have an even number of bytes
// then up to 7 bytes of padding are added). The lower 4 bits describe the log_2
// number of values (e.g. if there are 1024 then the lower 4 bits will be
// 0xA) All blocks except the last must have power-of-two number of values.
// This not only makes metadata smaller but it makes decoding easier since
// batch sizes are typically a power of 2. 4 bits would allow us to express
// up to 16Ki values but we restrict this further to 4Ki values.
//
// This means blocks can have 1 to 4Ki values and 8 - 32Ki bytes.
//
// All metadata words are serialized (as little endian) into a single buffer
// of metadata values.
//
// If there is repetition then we also create a repetition index. This is a
// single buffer of integer vectors (stored in row major order). There is one
// entry for each chunk. The size of the vector is based on the depth of random
// access we want to support.
//
// A vector of size 2 is the minimum and will support row-based random access (e.g.
// "take the 57th row"). A vector of size 3 will support 1 level of nested access
// (e.g. "take the 3rd item in the 57th row"). A vector of size 4 will support 2
// levels of nested access and so on.
//
// The first number in the vector is the number of top-level rows that complete in
// the chunk. The second number is the number of second-level rows that complete
// after the final top-level row completed (or beginning of the chunk if no top-level
// row completes in the chunk). And so on. The final number in the vector is always
// the number of leftover items not covered by earlier entries in the vector.
//
// Currently we are limited to 0 levels of nested access but that will change in the
// future.
//
// The repetition index and the chunk metadata are read at initialization time and
// cached in memory.
fn serialize_miniblocks(
miniblocks: MiniBlockCompressed,
rep: Vec<LanceBuffer>,
def: Vec<LanceBuffer>,
) -> (LanceBuffer, LanceBuffer) {
let bytes_rep = rep.iter().map(|r| r.len()).sum::<usize>();
let bytes_def = def.iter().map(|d| d.len()).sum::<usize>();
let max_bytes_repdef_len = rep.len() * 4;
let max_padding = miniblocks.chunks.len() * (1 + (2 * MINIBLOCK_MAX_PADDING));
let mut data_buffer = Vec::with_capacity(
miniblocks.data.len() // `values`
+ bytes_rep // `rep_len * num_blocks`
+ bytes_def // `def_len * num_blocks`
+ max_bytes_repdef_len // `rep` and `def`
+ max_padding, // `P1`, `P2`, and `P3` for each block
);
let mut meta_buffer = Vec::with_capacity(miniblocks.data.len() * 2);
let mut value_offset = 0;
for ((chunk, rep), def) in miniblocks.chunks.into_iter().zip(rep).zip(def) {
let start_len = data_buffer.len();
// Start of chunk should be aligned
debug_assert_eq!(start_len % MINIBLOCK_ALIGNMENT, 0);
assert!(rep.len() < u16::MAX as usize);
assert!(def.len() < u16::MAX as usize);
let bytes_rep = rep.len() as u16;
let bytes_def = def.len() as u16;
let bytes_val = chunk.num_bytes;
// Each chunk starts with the size of the rep buffer (2 bytes) the size of
// the def buffer (2 bytes) and the size of the values buffer (2 bytes)
data_buffer.extend_from_slice(&bytes_rep.to_le_bytes());
data_buffer.extend_from_slice(&bytes_def.to_le_bytes());
data_buffer.extend_from_slice(&bytes_val.to_le_bytes());
data_buffer.extend_from_slice(&rep);
// In theory we should insert P1 here. However, since we do not have bit-packing of rep
// def levels yet we can skip this step.
debug_assert_eq!(data_buffer.len() % 2, 0);
data_buffer.extend_from_slice(&def);
let p2 = pad_bytes::<MINIBLOCK_ALIGNMENT>(data_buffer.len());
// SAFETY: We ensured the data buffer would be large enough when we allocated
data_buffer.extend(iter::repeat(0).take(p2));
let num_value_bytes = chunk.num_bytes as usize;
let values =
&miniblocks.data[value_offset as usize..value_offset as usize + num_value_bytes];
debug_assert_eq!(data_buffer.len() % MINIBLOCK_ALIGNMENT, 0);
data_buffer.extend_from_slice(values);
let p3 = pad_bytes::<MINIBLOCK_ALIGNMENT>(data_buffer.len());
data_buffer.extend(iter::repeat(0).take(p3));
value_offset += num_value_bytes as u64;
let chunk_bytes = data_buffer.len() - start_len;
assert!(chunk_bytes <= 16 * 1024);
assert!(chunk_bytes > 0);
assert_eq!(chunk_bytes % 8, 0);
// We subtract 1 here from chunk_bytes because we want to be able to express
// a size of 32KiB and not (32Ki - 8)B which is what we'd get otherwise with
// 0xFFF
let divided_bytes = chunk_bytes / MINIBLOCK_ALIGNMENT;
let divided_bytes_minus_one = (divided_bytes - 1) as u64;
let metadata = ((divided_bytes_minus_one << 4) | chunk.log_num_values as u64) as u16;
meta_buffer.extend_from_slice(&metadata.to_le_bytes());
}
(
LanceBuffer::Owned(data_buffer),
LanceBuffer::Owned(meta_buffer),
)
}
/// Compresses a buffer of levels into chunks
///
/// TODO: Use bit-packing here
///
/// If these are repetition levels then we also calculate the repetition index here (that
/// is the third return value)
fn compress_levels(
levels: Option<RepDefSlicer<'_>>,
num_values: u64,
compression_strategy: &dyn CompressionStrategy,
chunks: &[MiniBlockChunk],
// This will be 0 if we are compressing def levels
max_rep: u16,
) -> Result<(Vec<LanceBuffer>, pb::ArrayEncoding, LanceBuffer)> {
if let Some(mut levels) = levels {
let mut rep_index = if max_rep > 0 {
Vec::with_capacity(chunks.len())
} else {
vec![]
};
// Make the levels into a FixedWidth data block
let num_levels = levels.num_levels() as u64;
let mut levels_buf = levels.all_levels().try_clone().unwrap();
let levels_block = DataBlock::FixedWidth(FixedWidthDataBlock {
data: levels_buf.borrow_and_clone(),
bits_per_value: 16,
num_values: num_levels,
block_info: BlockInfo::new(),
});
let levels_field = Field::new_arrow("", DataType::UInt16, false)?;
// Pick a block compressor
let (compressor, compressor_desc) =
compression_strategy.create_block_compressor(&levels_field, &levels_block)?;
// Compress blocks of levels (sized according to the chunks)
let mut buffers = Vec::with_capacity(chunks.len());
let mut values_counter = 0;
for (chunk_idx, chunk) in chunks.iter().enumerate() {
let chunk_num_values = chunk.num_values(values_counter, num_values);
values_counter += chunk_num_values;
let mut chunk_levels = if chunk_idx < chunks.len() - 1 {
levels.slice_next(chunk_num_values as usize)
} else {
levels.slice_rest()
};
let num_chunk_levels = (chunk_levels.len() / 2) as u64;
if max_rep > 0 {
// If max_rep > 0 then we are working with rep levels and we need
// to calculate the repetition index. The repetition index for a
// chunk is currently 2 values (in the future it may be more).
//
// The first value is the number of rows that _finish_ in the
// chunk.
//
// The second value is the number of "leftovers" after the last
// finished row in the chunk.
let rep_values = chunk_levels.borrow_to_typed_slice::<u16>();
let rep_values = rep_values.as_ref();
// We skip 1 here because a max_rep at spot 0 doesn't count as a finished list (we
// will count it in the previous chunk)
let mut num_rows = rep_values.iter().skip(1).filter(|v| **v == max_rep).count();
let num_leftovers = if chunk_idx < chunks.len() - 1 {
rep_values
.iter()
.rev()
.position(|v| *v == max_rep)
// # of leftovers includes the max_rep spot
.map(|pos| pos + 1)
.unwrap_or(rep_values.len())
} else {
// Last chunk can't have leftovers
0
};
if chunk_idx != 0 && rep_values[0] == max_rep {
// This chunk starts with a new row and so, if we thought we had leftovers
// in the previous chunk, we were mistaken
// TODO: Can use unchecked here
let rep_len = rep_index.len();
if rep_index[rep_len - 1] != 0 {
// We thought we had leftovers but that was actually a full row
rep_index[rep_len - 2] += 1;
rep_index[rep_len - 1] = 0;
}
}
if chunk_idx == chunks.len() - 1 {
// The final list
num_rows += 1;
}
rep_index.push(num_rows as u64);
rep_index.push(num_leftovers as u64);
}
let chunk_levels_block = DataBlock::FixedWidth(FixedWidthDataBlock {
data: chunk_levels,
bits_per_value: 16,
num_values: num_chunk_levels,
block_info: BlockInfo::new(),
});
let compressed_levels = compressor.compress(chunk_levels_block)?;
buffers.push(compressed_levels);
}
debug_assert_eq!(levels.num_levels_remaining(), 0);
let rep_index = LanceBuffer::reinterpret_vec(rep_index);
Ok((buffers, compressor_desc, rep_index))
} else {
// Everything is valid or we have no repetition so we encode as a constant
// array of 0
let data = chunks.iter().map(|_| LanceBuffer::empty()).collect();
let scalar = 0_u16.to_le_bytes().to_vec();
let encoding = ProtobufUtils::constant(scalar, num_values);
Ok((data, encoding, LanceBuffer::empty()))
}
}
fn encode_simple_all_null(
column_idx: u32,
num_rows: u64,
row_number: u64,
) -> Result<EncodedPage> {
let description = ProtobufUtils::simple_all_null_layout();
Ok(EncodedPage {
column_idx,
data: vec![],
description: PageEncoding::Structural(description),
num_rows,
row_number,
})
}
// Encodes a page where all values are null but we have rep/def
// information that we need to store (e.g. to distinguish between
// different kinds of null)
fn encode_complex_all_null(
column_idx: u32,
repdefs: Vec<RepDefBuilder>,
row_number: u64,
num_rows: u64,
) -> Result<EncodedPage> {
let repdef = RepDefBuilder::serialize(repdefs);
// TODO: Actually compress repdef
let rep_bytes = if let Some(rep) = repdef.repetition_levels.as_ref() {
LanceBuffer::reinterpret_slice(rep.clone())
} else {
LanceBuffer::empty()
};
let def_bytes = if let Some(def) = repdef.definition_levels.as_ref() {
LanceBuffer::reinterpret_slice(def.clone())
} else {
LanceBuffer::empty()
};
let description = ProtobufUtils::all_null_layout(&repdef.def_meaning);
Ok(EncodedPage {
column_idx,
data: vec![rep_bytes, def_bytes],
description: PageEncoding::Structural(description),
num_rows,
row_number,
})
}
#[allow(clippy::too_many_arguments)]
fn encode_miniblock(
column_idx: u32,
field: &Field,
compression_strategy: &dyn CompressionStrategy,
data: DataBlock,
repdefs: Vec<RepDefBuilder>,
row_number: u64,
dictionary_data: Option<DataBlock>,
num_rows: u64,
) -> Result<EncodedPage> {
let repdef = RepDefBuilder::serialize(repdefs);
if let DataBlock::AllNull(_null_block) = data {
// If we got here then all the data is null but we have rep/def information that
// we need to store.
todo!()
}
// The validity is encoded in repdef so we can remove it
let data = data.remove_validity();
// We encode FSL by flattening the data and then compressing it. This means the mini-block will have
// more items than rows if any FSL layers are present.
let data = data.flatten();
let num_items = data.num_values();
let compressor = compression_strategy.create_miniblock_compressor(field, &data)?;
let (compressed_data, value_encoding) = compressor.compress(data)?;
let max_rep = repdef.def_meaning.iter().filter(|l| l.is_list()).count() as u16;
let (compressed_rep, rep_encoding, rep_index) = Self::compress_levels(
repdef.rep_slicer(),
num_items,
compression_strategy,
&compressed_data.chunks,
max_rep,
)?;
let (rep_index, rep_index_depth) = if rep_index.is_empty() {
(None, 0)
} else {
// TODO: Support repetition index depth > 1
(Some(rep_index), 1)
};
let (compressed_def, def_encoding, _) = Self::compress_levels(
repdef.def_slicer(),
num_items,
compression_strategy,
&compressed_data.chunks,
/*max_rep=*/ 0,
)?;
// TODO: Parquet sparsely encodes values here. We could do the same but
// then we won't have log2 values per chunk. This means more metadata
// and potentially more decoder asymmetry. However, it may be worth
// investigating at some point
let (block_value_buffer, block_meta_buffer) =
Self::serialize_miniblocks(compressed_data, compressed_rep, compressed_def);
// Metadata, Data, Dictionary, (maybe) Repetition Index
let mut data = Vec::with_capacity(4);
data.push(block_meta_buffer);
data.push(block_value_buffer);
if let Some(dictionary_data) = dictionary_data {
// field in `create_block_compressor` is not used currently.
let dummy_dictionary_field = Field::new_arrow("", DataType::UInt16, false)?;
let (compressor, dictionary_encoding) = compression_strategy
.create_block_compressor(&dummy_dictionary_field, &dictionary_data)?;
let dictionary_buffer = compressor.compress(dictionary_data)?;
data.push(dictionary_buffer);
if let Some(rep_index) = rep_index {
data.push(rep_index);
}
let description = ProtobufUtils::miniblock_layout(
rep_encoding,
def_encoding,
value_encoding,
rep_index_depth,
Some(dictionary_encoding),
&repdef.def_meaning,
num_items,
);
Ok(EncodedPage {
num_rows,
column_idx,
data,
description: PageEncoding::Structural(description),
row_number,
})
} else {
let description = ProtobufUtils::miniblock_layout(
rep_encoding,
def_encoding,
value_encoding,
rep_index_depth,
None,
&repdef.def_meaning,
num_items,
);
if let Some(mut rep_index) = rep_index {
let view = rep_index.borrow_to_typed_slice::<u64>();
let total = view.chunks_exact(2).map(|c| c[0]).sum::<u64>();
debug_assert_eq!(total, num_rows);
data.push(rep_index);
}
Ok(EncodedPage {
num_rows,
column_idx,
data,
description: PageEncoding::Structural(description),
row_number,
})
}
}
// For fixed-size data we encode < control word | data > for each value
fn serialize_full_zip_fixed(
fixed: FixedWidthDataBlock,
mut repdef: ControlWordIterator,
num_items: u64,
) -> SerializedFullZip {
let len = fixed.data.len() + repdef.bytes_per_word() * num_items as usize;
let mut zipped_data = Vec::with_capacity(len);
let max_rep_index_val = if repdef.has_repetition() {
len as u64
} else {
// Setting this to 0 means we won't write a repetition index
0
};
let mut rep_index_builder =
BytepackedIntegerEncoder::with_capacity(num_items as usize + 1, max_rep_index_val);
// I suppose we can just pad to the nearest byte but I'm not sure we need to worry about this anytime soon
// because it is unlikely compression of large values is going to yield a result that is not byte aligned
assert_eq!(
fixed.bits_per_value % 8,
0,
"Non-byte aligned full-zip compression not yet supported"
);
let bytes_per_value = fixed.bits_per_value as usize / 8;
let mut data_iter = fixed.data.chunks_exact(bytes_per_value);
let mut offset = 0;
while let Some(control) = repdef.append_next(&mut zipped_data) {
if control.is_new_row {
// We have finished a row
debug_assert!(offset <= len);
// SAFETY: We know that `start <= len`
unsafe { rep_index_builder.append(offset as u64) };
}
if control.is_visible {
let value = data_iter.next().unwrap();
zipped_data.extend_from_slice(value);
}
offset = zipped_data.len();
}
debug_assert_eq!(zipped_data.len(), len);
// Put the final value in the rep index
// SAFETY: `zipped_data.len() == len`
unsafe {
rep_index_builder.append(zipped_data.len() as u64);
}
let zipped_data = LanceBuffer::Owned(zipped_data);
let rep_index = rep_index_builder.into_data();
let rep_index = if rep_index.is_empty() {
None
} else {
Some(LanceBuffer::Owned(rep_index))
};
SerializedFullZip {
values: zipped_data,
repetition_index: rep_index,
}
}
// For variable-size data we encode < control word | length | data > for each value
//
// In addition, we create a second buffer, the repetition index
fn serialize_full_zip_variable(
mut variable: VariableWidthBlock,
mut repdef: ControlWordIterator,
num_items: u64,
) -> SerializedFullZip {
let bytes_per_offset = variable.bits_per_offset as usize / 8;
assert_eq!(
variable.bits_per_offset % 8,
0,
"Only byte-aligned offsets supported"
);
let len = variable.data.len()
+ repdef.bytes_per_word() * num_items as usize
+ bytes_per_offset * variable.num_values as usize;
let mut buf = Vec::with_capacity(len);
let max_rep_index_val = len as u64;
let mut rep_index_builder =
BytepackedIntegerEncoder::with_capacity(num_items as usize + 1, max_rep_index_val);
// TODO: byte pack the item lengths with varint encoding
match bytes_per_offset {
4 => {
let offs = variable.offsets.borrow_to_typed_slice::<u32>();
let mut rep_offset = 0;
let mut windows_iter = offs.as_ref().windows(2);
while let Some(control) = repdef.append_next(&mut buf) {
if control.is_new_row {
// We have finished a row
debug_assert!(rep_offset <= len);
// SAFETY: We know that `buf.len() <= len`
unsafe { rep_index_builder.append(rep_offset as u64) };
}
if control.is_visible {
let window = windows_iter.next().unwrap();
if control.is_valid_item {
buf.extend_from_slice(&(window[1] - window[0]).to_le_bytes());
buf.extend_from_slice(
&variable.data[window[0] as usize..window[1] as usize],
);
}
}
rep_offset = buf.len();
}
}
8 => {
let offs = variable.offsets.borrow_to_typed_slice::<u64>();
let mut rep_offset = 0;
let mut windows_iter = offs.as_ref().windows(2);
while let Some(control) = repdef.append_next(&mut buf) {
if control.is_new_row {
// We have finished a row
debug_assert!(rep_offset <= len);
// SAFETY: We know that `buf.len() <= len`
unsafe { rep_index_builder.append(rep_offset as u64) };
}
if control.is_visible {
let window = windows_iter.next().unwrap();
if control.is_valid_item {
buf.extend_from_slice(&(window[1] - window[0]).to_le_bytes());
buf.extend_from_slice(
&variable.data[window[0] as usize..window[1] as usize],
);
}
}
rep_offset = buf.len();
}
}
_ => panic!("Unsupported offset size"),
}
// We might have saved a few bytes by not copying lengths when the length was zero. However,
// if we are over `len` then we have a bug.
debug_assert!(buf.len() <= len);
// Put the final value in the rep index
// SAFETY: `zipped_data.len() == len`
unsafe {
rep_index_builder.append(buf.len() as u64);
}
let zipped_data = LanceBuffer::Owned(buf);
let rep_index = rep_index_builder.into_data();
debug_assert!(!rep_index.is_empty());
let rep_index = Some(LanceBuffer::Owned(rep_index));
SerializedFullZip {
values: zipped_data,
repetition_index: rep_index,
}
}
/// Serializes data into a single buffer according to the full-zip format which zips
/// together the repetition, definition, and value data into a single buffer.
fn serialize_full_zip(
compressed_data: PerValueDataBlock,
repdef: ControlWordIterator,
num_items: u64,
) -> SerializedFullZip {
match compressed_data {
PerValueDataBlock::Fixed(fixed) => {
Self::serialize_full_zip_fixed(fixed, repdef, num_items)
}
PerValueDataBlock::Variable(var) => {
Self::serialize_full_zip_variable(var, repdef, num_items)
}
}
}
fn encode_full_zip(
column_idx: u32,
field: &Field,
compression_strategy: &dyn CompressionStrategy,
data: DataBlock,
repdefs: Vec<RepDefBuilder>,
row_number: u64,
num_lists: u64,
) -> Result<EncodedPage> {
let repdef = RepDefBuilder::serialize(repdefs);
let max_rep = repdef
.repetition_levels
.as_ref()
.map_or(0, |r| r.iter().max().copied().unwrap_or(0));
let max_def = repdef
.definition_levels
.as_ref()
.map_or(0, |d| d.iter().max().copied().unwrap_or(0));
// The validity is encoded in repdef so we can remove it
let data = data.remove_validity();
// To handle FSL we just flatten
let data = data.flatten();
let (num_items, num_visible_items) =
if let Some(rep_levels) = repdef.repetition_levels.as_ref() {
// If there are rep levels there may be "invisible" items and we need to encode
// rep_levels.len() things which might be larger than data.num_values()
(rep_levels.len() as u64, data.num_values())
} else {
// If there are no rep levels then we encode data.num_values() things
(data.num_values(), data.num_values())
};
let max_visible_def = repdef.max_visible_level.unwrap_or(u16::MAX);
let repdef_iter = build_control_word_iterator(
repdef.repetition_levels.as_deref(),
max_rep,
repdef.definition_levels.as_deref(),
max_def,
max_visible_def,
num_items as usize,
);
let bits_rep = repdef_iter.bits_rep();
let bits_def = repdef_iter.bits_def();
let compressor = compression_strategy.create_per_value(field, &data)?;
let (compressed_data, value_encoding) = compressor.compress(data)?;
let description = match &compressed_data {
PerValueDataBlock::Fixed(fixed) => ProtobufUtils::fixed_full_zip_layout(
bits_rep,
bits_def,
fixed.bits_per_value as u32,
value_encoding,
&repdef.def_meaning,
num_items as u32,
num_visible_items as u32,
),
PerValueDataBlock::Variable(variable) => ProtobufUtils::variable_full_zip_layout(
bits_rep,
bits_def,
variable.bits_per_offset as u32,
value_encoding,
&repdef.def_meaning,
num_items as u32,
num_visible_items as u32,
),
};
let zipped = Self::serialize_full_zip(compressed_data, repdef_iter, num_items);
let data = if let Some(repindex) = zipped.repetition_index {
vec![zipped.values, repindex]
} else {
vec![zipped.values]
};
Ok(EncodedPage {
num_rows: num_lists,
column_idx,
data,
description: PageEncoding::Structural(description),
row_number,
})
}
fn dictionary_encode(mut data_block: DataBlock, cardinality: u64) -> (DataBlock, DataBlock) {
match data_block {
DataBlock::FixedWidth(ref mut fixed_width_data_block) => {
// Currently FixedWidth DataBlock with only bits_per_value 128 has cardinality
// TODO: a follow up PR to support `FixedWidth DataBlock with bits_per_value == 256`.
let mut map = HashMap::new();
let u128_slice = fixed_width_data_block.data.borrow_to_typed_slice::<u128>();
let u128_slice = u128_slice.as_ref();
let mut dictionary_buffer = Vec::with_capacity(cardinality as usize);
let mut indices_buffer =
Vec::with_capacity(fixed_width_data_block.num_values as usize);
let mut curr_idx: u8 = 0;
u128_slice.iter().for_each(|&value| {
let idx = *map.entry(value).or_insert_with(|| {
dictionary_buffer.push(value);
curr_idx += 1;
curr_idx - 1
});
indices_buffer.push(idx);
});
let dictionary_data_block = DataBlock::FixedWidth(FixedWidthDataBlock {
data: LanceBuffer::reinterpret_vec(dictionary_buffer),
bits_per_value: 128,
num_values: curr_idx as u64,
block_info: BlockInfo::default(),
});
let mut indices_data_block = DataBlock::FixedWidth(FixedWidthDataBlock {
data: LanceBuffer::reinterpret_vec(indices_buffer),
bits_per_value: 8,
num_values: fixed_width_data_block.num_values,
block_info: BlockInfo::default(),
});
// Todo: if we decide to do eager statistics computing, wrap statistics computing
// in DataBlock constructor.
indices_data_block.compute_stat();
(indices_data_block, dictionary_data_block)
}
DataBlock::VariableWidth(ref mut variable_width_data_block) => {
match variable_width_data_block.bits_per_offset {
32 => {
let mut map: HashMap<U8SliceKey, u8> = HashMap::new();
let offsets = variable_width_data_block
.offsets
.borrow_to_typed_slice::<u32>();
let offsets = offsets.as_ref();
let max_len = variable_width_data_block.get_stat(Stat::MaxLength).expect(
"VariableWidth DataBlock should have valid `Stat::DataSize` statistics",
);
let max_len = max_len.as_primitive::<UInt64Type>().value(0);
let mut dictionary_buffer: Vec<u8> =
Vec::with_capacity((max_len * cardinality) as usize);
let mut dictionary_offsets_buffer = vec![0];
let mut curr_idx = 0;
let mut indices_buffer =
Vec::with_capacity(variable_width_data_block.num_values as usize);
offsets
.iter()
.zip(offsets.iter().skip(1))
.for_each(|(&start, &end)| {
let key =
&variable_width_data_block.data[start as usize..end as usize];
let idx = *map.entry(U8SliceKey(key)).or_insert_with(|| {
dictionary_buffer.extend_from_slice(key);
dictionary_offsets_buffer.push(dictionary_buffer.len() as u32);
curr_idx += 1;
curr_idx - 1
});
indices_buffer.push(idx);
});
let dictionary_data_block = DataBlock::VariableWidth(VariableWidthBlock {
data: LanceBuffer::reinterpret_vec(dictionary_buffer),
offsets: LanceBuffer::reinterpret_vec(dictionary_offsets_buffer),
bits_per_offset: 32,
num_values: curr_idx as u64,
block_info: BlockInfo::default(),
});
let mut indices_data_block = DataBlock::FixedWidth(FixedWidthDataBlock {
data: LanceBuffer::Owned(indices_buffer),
bits_per_value: 8,
num_values: variable_width_data_block.num_values,
block_info: BlockInfo::default(),
});
// Todo: if we decide to do eager statistics computing, wrap statistics computing
// in DataBlock constructor.
indices_data_block.compute_stat();
(indices_data_block, dictionary_data_block)
}
64 => {
todo!("A follow up PR to support dictionary encoding with dictionary type `VariableWidth DataBlock` with bits_per_offset 64");
}
_ => {
unreachable!()
}
}
}
_ => {
unreachable!()
}
}
}
// Creates an encode task, consuming all buffered data
fn do_flush(
&mut self,
arrays: Vec<ArrayRef>,
repdefs: Vec<RepDefBuilder>,
row_number: u64,
num_rows: u64,
) -> Result<Vec<EncodeTask>> {
let column_idx = self.column_index;
let compression_strategy = self.compression_strategy.clone();
let field = self.field.clone();
let encoding_metadata = self.encoding_metadata.clone();
let task = spawn_cpu(move || {
let num_values = arrays.iter().map(|arr| arr.len() as u64).sum();
if num_values == 0 {
// We should not encode empty arrays. So if we get here that should mean that we
// either have all empty lists or all null lists (or a mix). We still need to encode
// the rep/def information but we can skip the data encoding.
return Self::encode_complex_all_null(column_idx, repdefs, row_number, num_rows);
}
let num_nulls = arrays
.iter()
.map(|arr| arr.logical_nulls().map(|n| n.null_count()).unwrap_or(0) as u64)
.sum::<u64>();
if num_values == num_nulls {
if repdefs.iter().all(|rd| rd.is_simple_validity()) {
log::debug!(
"Encoding column {} with {} items using simple-null layout",
column_idx,
num_values
);
// Simple case, no rep/def and all nulls, we don't need to encode any data
Self::encode_simple_all_null(column_idx, num_values, row_number)
} else {
// If we get here then we have definition levels (presumably due to FSL) and
// we need to store those
Self::encode_complex_all_null(column_idx, repdefs, row_number, num_rows)
}
} else {
let data_block = DataBlock::from_arrays(&arrays, num_values);
// if the `data_block` is a `StructDataBlock`, then this is a struct with packed struct encoding.
if let DataBlock::Struct(ref struct_data_block) = data_block {
if struct_data_block
.children
.iter()
.any(|child| !matches!(child, DataBlock::FixedWidth(_)))
{
panic!("packed struct encoding currently only supports fixed-width fields.")
}
}
const DICTIONARY_ENCODING_THRESHOLD: u64 = 100;
let cardinality =
if let Some(cardinality_array) = data_block.get_stat(Stat::Cardinality) {
cardinality_array.as_primitive::<UInt64Type>().value(0)
} else {
u64::MAX
};
// The triggering threshold for dictionary encoding can be further tuned.
if cardinality <= DICTIONARY_ENCODING_THRESHOLD
&& data_block.num_values() >= 10 * cardinality
{
let (indices_data_block, dictionary_data_block) =
Self::dictionary_encode(data_block, cardinality);
Self::encode_miniblock(
column_idx,
&field,
compression_strategy.as_ref(),
indices_data_block,
repdefs,
row_number,
Some(dictionary_data_block),
num_rows,
)
} else if Self::prefers_miniblock(&data_block, encoding_metadata.as_ref()) {
log::debug!(
"Encoding column {} with {} items using mini-block layout",
column_idx,
num_values
);
Self::encode_miniblock(
column_idx,
&field,
compression_strategy.as_ref(),
data_block,
repdefs,
row_number,
None,
num_rows,
)
} else if Self::prefers_fullzip(encoding_metadata.as_ref()) {
log::debug!(
"Encoding column {} with {} items using full-zip layout",
column_idx,
num_values
);
Self::encode_full_zip(
column_idx,
&field,
compression_strategy.as_ref(),
data_block,
repdefs,
row_number,
num_rows,
)
} else {
Err(Error::InvalidInput { source: format!("Cannot determine structural encoding for field {}. This typically indicates an invalid value of the field metadata key {}", field.name, STRUCTURAL_ENCODING_META_KEY).into(), location: location!() })
}
}
})
.boxed();
Ok(vec![task])
}
fn extract_validity_buf(array: &dyn Array, repdef: &mut RepDefBuilder) {
if let Some(validity) = array.nulls() {
repdef.add_validity_bitmap(validity.clone());
} else {
repdef.add_no_null(array.len());
}
}
fn extract_validity(array: &dyn Array, repdef: &mut RepDefBuilder) {
match array.data_type() {
DataType::Null => {
repdef.add_validity_bitmap(NullBuffer::new(BooleanBuffer::new_unset(array.len())));
}
DataType::Dictionary(_, _) => {
unreachable!()
}
DataType::FixedSizeList(_, dimension) => {
// Extract our validity buf and then any child validity bufs
repdef.add_fsl(array.nulls().cloned(), *dimension as usize, array.len());
let array = array.as_fixed_size_list();
Self::extract_validity(array.values(), repdef);
}
_ => Self::extract_validity_buf(array, repdef),
}
}
}
impl FieldEncoder for PrimitiveStructuralEncoder {
// Buffers data, if there is enough to write a page then we create an encode task
fn maybe_encode(
&mut self,
array: ArrayRef,
_external_buffers: &mut OutOfLineBuffers,
mut repdef: RepDefBuilder,
row_number: u64,
num_rows: u64,
) -> Result<Vec<EncodeTask>> {
Self::extract_validity(array.as_ref(), &mut repdef);
self.accumulated_repdefs.push(repdef);
if let Some((arrays, row_number, num_rows)) =
self.accumulation_queue.insert(array, row_number, num_rows)
{
let accumulated_repdefs = std::mem::take(&mut self.accumulated_repdefs);
Ok(self.do_flush(arrays, accumulated_repdefs, row_number, num_rows)?)
} else {
Ok(vec![])
}
}
// If there is any data left in the buffer then create an encode task from it
fn flush(&mut self, _external_buffers: &mut OutOfLineBuffers) -> Result<Vec<EncodeTask>> {
if let Some((arrays, row_number, num_rows)) = self.accumulation_queue.flush() {
let accumulated_repdefs = std::mem::take(&mut self.accumulated_repdefs);
Ok(self.do_flush(arrays, accumulated_repdefs, row_number, num_rows)?)
} else {
Ok(vec![])
}
}
fn num_columns(&self) -> u32 {
1
}
fn finish(
&mut self,
_external_buffers: &mut OutOfLineBuffers,
) -> BoxFuture<'_, Result<Vec<crate::encoder::EncodedColumn>>> {
std::future::ready(Ok(vec![EncodedColumn::default()])).boxed()
}
}
#[cfg(test)]
#[allow(clippy::single_range_in_vec_init)]
mod tests {
use std::{collections::VecDeque, sync::Arc};
use arrow_array::{ArrayRef, Int8Array, StringArray};
use crate::encodings::logical::primitive::{
ChunkDrainInstructions, PrimitiveStructuralEncoder,
};
use super::{ChunkInstructions, DataBlock, DecodeMiniBlockTask, PreambleAction};
#[test]
fn test_is_narrow() {
let int8_array = Int8Array::from(vec![1, 2, 3]);
let array_ref: ArrayRef = Arc::new(int8_array);
let block = DataBlock::from_array(array_ref);
assert!(PrimitiveStructuralEncoder::is_narrow(&block));
let string_array = StringArray::from(vec![Some("hello"), Some("world")]);
let block = DataBlock::from_array(string_array);
assert!(PrimitiveStructuralEncoder::is_narrow(&block));
let string_array = StringArray::from(vec![
Some("hello world".repeat(100)),
Some("world".to_string()),
]);
let block = DataBlock::from_array(string_array);
assert!((!PrimitiveStructuralEncoder::is_narrow(&block)));
}
#[test]
fn test_map_range() {
// Null in the middle
// [[A, B, C], [D, E], NULL, [F, G, H]]
let rep = Some(vec![1, 0, 0, 1, 0, 1, 1, 0, 0]);
let def = Some(vec![0, 0, 0, 0, 0, 1, 0, 0, 0]);
let max_visible_def = 0;
let total_items = 8;
let max_rep = 1;
let check = |range, expected_item_range, expected_level_range| {
let (item_range, level_range) = DecodeMiniBlockTask::map_range(
range,
rep.as_ref(),
def.as_ref(),
max_rep,
max_visible_def,
total_items,
PreambleAction::Absent,
);
assert_eq!(item_range, expected_item_range);
assert_eq!(level_range, expected_level_range);
};
check(0..1, 0..3, 0..3);
check(1..2, 3..5, 3..5);
check(2..3, 5..5, 5..6);
check(3..4, 5..8, 6..9);
check(0..2, 0..5, 0..5);
check(1..3, 3..5, 3..6);
check(2..4, 5..8, 5..9);
check(0..3, 0..5, 0..6);
check(1..4, 3..8, 3..9);
check(0..4, 0..8, 0..9);
// Null at start
// [NULL, [A, B], [C]]
let rep = Some(vec![1, 1, 0, 1]);
let def = Some(vec![1, 0, 0, 0]);
let max_visible_def = 0;
let total_items = 3;
let check = |range, expected_item_range, expected_level_range| {
let (item_range, level_range) = DecodeMiniBlockTask::map_range(
range,
rep.as_ref(),
def.as_ref(),
max_rep,
max_visible_def,
total_items,
PreambleAction::Absent,
);
assert_eq!(item_range, expected_item_range);
assert_eq!(level_range, expected_level_range);
};
check(0..1, 0..0, 0..1);
check(1..2, 0..2, 1..3);
check(2..3, 2..3, 3..4);
check(0..2, 0..2, 0..3);
check(1..3, 0..3, 1..4);
check(0..3, 0..3, 0..4);
// Null at end
// [[A], [B, C], NULL]
let rep = Some(vec![1, 1, 0, 1]);
let def = Some(vec![0, 0, 0, 1]);
let max_visible_def = 0;
let total_items = 3;
let check = |range, expected_item_range, expected_level_range| {
let (item_range, level_range) = DecodeMiniBlockTask::map_range(
range,
rep.as_ref(),
def.as_ref(),
max_rep,
max_visible_def,
total_items,
PreambleAction::Absent,
);
assert_eq!(item_range, expected_item_range);
assert_eq!(level_range, expected_level_range);
};
check(0..1, 0..1, 0..1);
check(1..2, 1..3, 1..3);
check(2..3, 3..3, 3..4);
check(0..2, 0..3, 0..3);
check(1..3, 1..3, 1..4);
check(0..3, 0..3, 0..4);
// No nulls, with repetition
// [[A, B], [C, D], [E, F]]
let rep = Some(vec![1, 0, 1, 0, 1, 0]);
let def: Option<&[u16]> = None;
let max_visible_def = 0;
let total_items = 6;
let check = |range, expected_item_range, expected_level_range| {
let (item_range, level_range) = DecodeMiniBlockTask::map_range(
range,
rep.as_ref(),
def.as_ref(),
max_rep,
max_visible_def,
total_items,
PreambleAction::Absent,
);
assert_eq!(item_range, expected_item_range);
assert_eq!(level_range, expected_level_range);
};
check(0..1, 0..2, 0..2);
check(1..2, 2..4, 2..4);
check(2..3, 4..6, 4..6);
check(0..2, 0..4, 0..4);
check(1..3, 2..6, 2..6);
check(0..3, 0..6, 0..6);
// No repetition, with nulls (this case is trivial)
// [A, B, NULL, C]
let rep: Option<&[u16]> = None;
let def = Some(vec![0, 0, 1, 0]);
let max_visible_def = 1;
let total_items = 4;
let check = |range, expected_item_range, expected_level_range| {
let (item_range, level_range) = DecodeMiniBlockTask::map_range(
range,
rep.as_ref(),
def.as_ref(),
max_rep,
max_visible_def,
total_items,
PreambleAction::Absent,
);
assert_eq!(item_range, expected_item_range);
assert_eq!(level_range, expected_level_range);
};
check(0..1, 0..1, 0..1);
check(1..2, 1..2, 1..2);
check(2..3, 2..3, 2..3);
check(0..2, 0..2, 0..2);
check(1..3, 1..3, 1..3);
check(0..3, 0..3, 0..3);
// Tricky case, this chunk is a continuation and starts with a rep-index = 0
// [[..., A] [B, C], NULL]
//
// What we do will depend on the preamble action
let rep = Some(vec![0, 1, 0, 1]);
let def = Some(vec![0, 0, 0, 1]);
let max_visible_def = 0;
let total_items = 3;
let check = |range, expected_item_range, expected_level_range| {
let (item_range, level_range) = DecodeMiniBlockTask::map_range(
range,
rep.as_ref(),
def.as_ref(),
max_rep,
max_visible_def,
total_items,
PreambleAction::Take,
);
assert_eq!(item_range, expected_item_range);
assert_eq!(level_range, expected_level_range);
};
// If we are taking the preamble then the range must start at 0
check(0..1, 0..3, 0..3);
check(0..2, 0..3, 0..4);
let check = |range, expected_item_range, expected_level_range| {
let (item_range, level_range) = DecodeMiniBlockTask::map_range(
range,
rep.as_ref(),
def.as_ref(),
max_rep,
max_visible_def,
total_items,
PreambleAction::Skip,
);
assert_eq!(item_range, expected_item_range);
assert_eq!(level_range, expected_level_range);
};
check(0..1, 1..3, 1..3);
check(1..2, 3..3, 3..4);
check(0..2, 1..3, 1..4);
// Another preamble case but now it doesn't end with a new list
// [[..., A], NULL, [D, E]]
//
// What we do will depend on the preamble action
let rep = Some(vec![0, 1, 1, 0]);
let def = Some(vec![0, 1, 0, 0]);
let max_visible_def = 0;
let total_items = 4;
let check = |range, expected_item_range, expected_level_range| {
let (item_range, level_range) = DecodeMiniBlockTask::map_range(
range,
rep.as_ref(),
def.as_ref(),
max_rep,
max_visible_def,
total_items,
PreambleAction::Take,
);
assert_eq!(item_range, expected_item_range);
assert_eq!(level_range, expected_level_range);
};
// If we are taking the preamble then the range must start at 0
check(0..1, 0..1, 0..2);
check(0..2, 0..3, 0..4);
let check = |range, expected_item_range, expected_level_range| {
let (item_range, level_range) = DecodeMiniBlockTask::map_range(
range,
rep.as_ref(),
def.as_ref(),
max_rep,
max_visible_def,
total_items,
PreambleAction::Skip,
);
assert_eq!(item_range, expected_item_range);
assert_eq!(level_range, expected_level_range);
};
// If we are taking the preamble then the range must start at 0
check(0..1, 1..1, 1..2);
check(1..2, 1..3, 2..4);
check(0..2, 1..3, 1..4);
// Now a preamble case without any definition levels
// [[..., A] [B, C], [D]]
let rep = Some(vec![0, 1, 0, 1]);
let def: Option<Vec<u16>> = None;
let max_visible_def = 0;
let total_items = 4;
let check = |range, expected_item_range, expected_level_range| {
let (item_range, level_range) = DecodeMiniBlockTask::map_range(
range,
rep.as_ref(),
def.as_ref(),
max_rep,
max_visible_def,
total_items,
PreambleAction::Take,
);
assert_eq!(item_range, expected_item_range);
assert_eq!(level_range, expected_level_range);
};
// If we are taking the preamble then the range must start at 0
check(0..1, 0..3, 0..3);
check(0..2, 0..4, 0..4);
let check = |range, expected_item_range, expected_level_range| {
let (item_range, level_range) = DecodeMiniBlockTask::map_range(
range,
rep.as_ref(),
def.as_ref(),
max_rep,
max_visible_def,
total_items,
PreambleAction::Skip,
);
assert_eq!(item_range, expected_item_range);
assert_eq!(level_range, expected_level_range);
};
check(0..1, 1..3, 1..3);
check(1..2, 3..4, 3..4);
check(0..2, 1..4, 1..4);
}
#[test]
fn test_schedule_instructions() {
let repetition_index = vec![vec![5, 2], vec![3, 0], vec![4, 7], vec![2, 0]];
let check = |user_ranges, expected_instructions| {
let instructions =
ChunkInstructions::schedule_instructions(&repetition_index, user_ranges);
assert_eq!(instructions, expected_instructions);
};
// The instructions we expect if we're grabbing the whole range
let expected_take_all = vec![
ChunkInstructions {
chunk_idx: 0,
preamble: PreambleAction::Absent,
rows_to_skip: 0,
rows_to_take: 5,
take_trailer: true,
},
ChunkInstructions {
chunk_idx: 1,
preamble: PreambleAction::Take,
rows_to_skip: 0,
rows_to_take: 2,
take_trailer: false,
},
ChunkInstructions {
chunk_idx: 2,
preamble: PreambleAction::Absent,
rows_to_skip: 0,
rows_to_take: 4,
take_trailer: true,
},
ChunkInstructions {
chunk_idx: 3,
preamble: PreambleAction::Take,
rows_to_skip: 0,
rows_to_take: 1,
take_trailer: false,
},
];
// Take all as 1 range
check(&[0..14], expected_take_all.clone());
// Take all a individual rows
check(
&[
0..1,
1..2,
2..3,
3..4,
4..5,
5..6,
6..7,
7..8,
8..9,
9..10,
10..11,
11..12,
12..13,
13..14,
],
expected_take_all,
);
// Test some partial takes
// 2 rows in the same chunk but not contiguous
check(
&[0..1, 3..4],
vec![
ChunkInstructions {
chunk_idx: 0,
preamble: PreambleAction::Absent,
rows_to_skip: 0,
rows_to_take: 1,
take_trailer: false,
},
ChunkInstructions {
chunk_idx: 0,
preamble: PreambleAction::Absent,
rows_to_skip: 3,
rows_to_take: 1,
take_trailer: false,
},
],
);
// Taking just a trailer/preamble
check(
&[5..6],
vec![
ChunkInstructions {
chunk_idx: 0,
preamble: PreambleAction::Absent,
rows_to_skip: 5,
rows_to_take: 0,
take_trailer: true,
},
ChunkInstructions {
chunk_idx: 1,
preamble: PreambleAction::Take,
rows_to_skip: 0,
rows_to_take: 0,
take_trailer: false,
},
],
);
// Skipping an entire chunk
check(
&[7..10],
vec![
ChunkInstructions {
chunk_idx: 1,
preamble: PreambleAction::Skip,
rows_to_skip: 1,
rows_to_take: 1,
take_trailer: false,
},
ChunkInstructions {
chunk_idx: 2,
preamble: PreambleAction::Absent,
rows_to_skip: 0,
rows_to_take: 2,
take_trailer: false,
},
],
);
}
#[test]
fn test_drain_instructions() {
fn drain_from_instructions(
instructions: &mut VecDeque<ChunkInstructions>,
mut rows_desired: u64,
need_preamble: &mut bool,
skip_in_chunk: &mut u64,
) -> Vec<ChunkDrainInstructions> {
// Note: instructions.len() is an upper bound, we typically take much fewer
let mut drain_instructions = Vec::with_capacity(instructions.len());
while rows_desired > 0 || *need_preamble {
let (next_instructions, consumed_chunk) = instructions
.front()
.unwrap()
.drain_from_instruction(&mut rows_desired, need_preamble, skip_in_chunk);
if consumed_chunk {
instructions.pop_front();
}
drain_instructions.push(next_instructions);
}
drain_instructions
}
let repetition_index = vec![vec![5, 2], vec![3, 0], vec![4, 7], vec![2, 0]];
let user_ranges = vec![1..7, 10..14];
// First, schedule the ranges
let scheduled = ChunkInstructions::schedule_instructions(&repetition_index, &user_ranges);
let mut to_drain = VecDeque::from(scheduled.clone());
// Now we drain in batches of 4
let mut need_preamble = false;
let mut skip_in_chunk = 0;
let next_batch =
drain_from_instructions(&mut to_drain, 4, &mut need_preamble, &mut skip_in_chunk);
assert!(!need_preamble);
assert_eq!(skip_in_chunk, 4);
assert_eq!(
next_batch,
vec![ChunkDrainInstructions {
chunk_instructions: scheduled[0].clone(),
rows_to_take: 4,
rows_to_skip: 0,
preamble_action: PreambleAction::Absent,
}]
);
let next_batch =
drain_from_instructions(&mut to_drain, 4, &mut need_preamble, &mut skip_in_chunk);
assert!(!need_preamble);
assert_eq!(skip_in_chunk, 2);
assert_eq!(
next_batch,
vec![
ChunkDrainInstructions {
chunk_instructions: scheduled[0].clone(),
rows_to_take: 1,
rows_to_skip: 4,
preamble_action: PreambleAction::Absent,
},
ChunkDrainInstructions {
chunk_instructions: scheduled[1].clone(),
rows_to_take: 1,
rows_to_skip: 0,
preamble_action: PreambleAction::Take,
},
ChunkDrainInstructions {
chunk_instructions: scheduled[2].clone(),
rows_to_take: 2,
rows_to_skip: 0,
preamble_action: PreambleAction::Absent,
}
]
);
let next_batch =
drain_from_instructions(&mut to_drain, 2, &mut need_preamble, &mut skip_in_chunk);
assert!(!need_preamble);
assert_eq!(skip_in_chunk, 0);
assert_eq!(
next_batch,
vec![
ChunkDrainInstructions {
chunk_instructions: scheduled[2].clone(),
rows_to_take: 1,
rows_to_skip: 2,
preamble_action: PreambleAction::Absent,
},
ChunkDrainInstructions {
chunk_instructions: scheduled[3].clone(),
rows_to_take: 1,
rows_to_skip: 0,
preamble_action: PreambleAction::Take,
},
]
);
// Regression case. Need a chunk with preamble, rows, and trailer (the middle chunk here)
let repetition_index = vec![vec![5, 2], vec![3, 3], vec![20, 0]];
let user_ranges = vec![0..28];
// First, schedule the ranges
let scheduled = ChunkInstructions::schedule_instructions(&repetition_index, &user_ranges);
let mut to_drain = VecDeque::from(scheduled.clone());
// Drain first chunk and some of second chunk
let mut need_preamble = false;
let mut skip_in_chunk = 0;
let next_batch =
drain_from_instructions(&mut to_drain, 7, &mut need_preamble, &mut skip_in_chunk);
assert_eq!(
next_batch,
vec![
ChunkDrainInstructions {
chunk_instructions: scheduled[0].clone(),
rows_to_take: 6,
rows_to_skip: 0,
preamble_action: PreambleAction::Absent,
},
ChunkDrainInstructions {
chunk_instructions: scheduled[1].clone(),
rows_to_take: 1,
rows_to_skip: 0,
preamble_action: PreambleAction::Take,
},
]
);
assert!(!need_preamble);
assert_eq!(skip_in_chunk, 1);
// Now, the tricky part. We drain the second chunk, including the trailer, and need to make sure
// we get a drain task to take the preamble of the third chunk (and nothing else)
let next_batch =
drain_from_instructions(&mut to_drain, 2, &mut need_preamble, &mut skip_in_chunk);
assert_eq!(
next_batch,
vec![
ChunkDrainInstructions {
chunk_instructions: scheduled[1].clone(),
rows_to_take: 2,
rows_to_skip: 1,
preamble_action: PreambleAction::Skip,
},
ChunkDrainInstructions {
chunk_instructions: scheduled[2].clone(),
rows_to_take: 0,
rows_to_skip: 0,
preamble_action: PreambleAction::Take,
},
]
);
assert!(!need_preamble);
assert_eq!(skip_in_chunk, 0);
}
}