lance_index/vector/
graph.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors

//! Generic Graph implementation.
//!

use std::cmp::Reverse;
use std::collections::BinaryHeap;
use std::sync::Arc;

use arrow_schema::{DataType, Field};
use bitvec::vec::BitVec;
use deepsize::DeepSizeOf;

pub mod builder;

use crate::vector::DIST_COL;

use crate::vector::storage::DistCalculator;

pub(crate) const NEIGHBORS_COL: &str = "__neighbors";

lazy_static::lazy_static! {
    /// NEIGHBORS field.
    pub static ref NEIGHBORS_FIELD: Field =
        Field::new(NEIGHBORS_COL, DataType::List(Field::new_list_field(DataType::UInt32, true).into()), true);
        pub static ref DISTS_FIELD: Field =
        Field::new(DIST_COL, DataType::List(Field::new_list_field(DataType::Float32, true).into()), true);
}

pub struct GraphNode<I = u32> {
    pub id: I,
    pub neighbors: Vec<I>,
}

impl<I> GraphNode<I> {
    pub fn new(id: I, neighbors: Vec<I>) -> Self {
        Self { id, neighbors }
    }
}

impl<I> From<I> for GraphNode<I> {
    fn from(id: I) -> Self {
        Self {
            id,
            neighbors: vec![],
        }
    }
}

/// A wrapper for f32 to make it ordered, so that we can put it into
/// a BTree or Heap
#[derive(Debug, PartialEq, Clone, Copy, DeepSizeOf)]
pub struct OrderedFloat(pub f32);

impl PartialOrd for OrderedFloat {
    #[inline(always)]
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl Eq for OrderedFloat {}

impl Ord for OrderedFloat {
    #[inline(always)]
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.0.total_cmp(&other.0)
    }
}

impl From<f32> for OrderedFloat {
    fn from(f: f32) -> Self {
        Self(f)
    }
}

impl From<OrderedFloat> for f32 {
    fn from(f: OrderedFloat) -> Self {
        f.0
    }
}

#[derive(Debug, Eq, PartialEq, Clone, DeepSizeOf)]
pub struct OrderedNode {
    pub id: u32,
    pub dist: OrderedFloat,
}

impl OrderedNode {
    pub fn new(id: u32, dist: OrderedFloat) -> Self {
        Self { id, dist }
    }
}

impl PartialOrd for OrderedNode {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.dist.cmp(&other.dist))
    }
}

impl Ord for OrderedNode {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.dist.cmp(&other.dist)
    }
}

impl From<(OrderedFloat, u32)> for OrderedNode {
    fn from((dist, id): (OrderedFloat, u32)) -> Self {
        Self { id, dist }
    }
}

impl From<OrderedNode> for (OrderedFloat, u32) {
    fn from(node: OrderedNode) -> Self {
        (node.dist, node.id)
    }
}

/// Distance calculator.
///
/// This trait is used to calculate a query vector to a stream of vector IDs.
///
pub trait DistanceCalculator {
    /// Compute distances between one query vector to all the vectors in the
    /// list of IDs.
    fn compute_distances(&self, ids: &[u32]) -> Box<dyn Iterator<Item = f32>>;
}

/// Graph trait.
///
/// Type parameters
/// ---------------
/// K: Vertex Index type
/// T: the data type of vector, i.e., ``f32`` or ``f16``.
pub trait Graph {
    /// Get the number of nodes in the graph.
    fn len(&self) -> usize;

    /// Returns true if the graph is empty.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Get the neighbors of a graph node, identifyied by the index.
    fn neighbors(&self, key: u32) -> Arc<Vec<u32>>;
}

/// Array-based visited list (faster than HashSet)
pub struct Visited<'a> {
    visited: &'a mut BitVec,
    recently_visited: Vec<u32>,
}

impl<'a> Visited<'a> {
    pub fn insert(&mut self, node_id: u32) {
        let node_id_usize = node_id as usize;
        if !self.visited[node_id_usize] {
            self.visited.set(node_id_usize, true);
            self.recently_visited.push(node_id);
        }
    }

    pub fn contains(&self, node_id: u32) -> bool {
        let node_id_usize = node_id as usize;
        self.visited[node_id_usize]
    }

    pub fn count_ones(&self) -> usize {
        self.visited.count_ones()
    }
}

impl<'a> Drop for Visited<'a> {
    fn drop(&mut self) {
        for node_id in self.recently_visited.iter() {
            self.visited.set(*node_id as usize, false);
        }
        self.recently_visited.clear();
    }
}

#[derive(Debug, Clone)]
pub struct VisitedGenerator {
    visited: BitVec,
    capacity: usize,
}

impl VisitedGenerator {
    pub fn new(capacity: usize) -> Self {
        Self {
            visited: BitVec::repeat(false, capacity),
            capacity,
        }
    }

    pub fn generate(&mut self, node_count: usize) -> Visited<'_> {
        if node_count > self.capacity {
            let new_capacity = self.capacity.max(node_count).next_power_of_two();
            self.visited.resize(new_capacity, false);
            self.capacity = new_capacity;
        }
        Visited {
            visited: &mut self.visited,
            recently_visited: Vec::new(),
        }
    }
}

fn process_neighbors_with_look_ahead<F>(
    neighbors: &[u32],
    mut process_neighbor: F,
    look_ahead: Option<usize>,
    dist_calc: &impl DistCalculator,
) where
    F: FnMut(u32),
{
    match look_ahead {
        Some(look_ahead) => {
            for i in 0..neighbors.len().saturating_sub(look_ahead) {
                dist_calc.prefetch(neighbors[i + look_ahead]);
                process_neighbor(neighbors[i]);
            }
            for neighbor in &neighbors[neighbors.len().saturating_sub(look_ahead)..] {
                process_neighbor(*neighbor);
            }
        }
        None => {
            for neighbor in neighbors.iter() {
                process_neighbor(*neighbor);
            }
        }
    }
}

/// Beam search over a graph
///
/// This is the same as ``search-layer`` in HNSW.
///
/// Parameters
/// ----------
/// graph : Graph
///  The graph to search.
/// start : &[OrderedNode]
///  The starting point.
/// query : &[f32]
///  The query vector.
/// k : usize
///  The number of results to return.
/// bitset : Option<&RoaringBitmap>
///  The bitset of node IDs to filter the results, bit 1 for the node to keep, and bit 0 for the node to discard.
///
/// Returns
/// -------
/// A descending sorted list of ``(dist, node_id)`` pairs.
///
/// WARNING: Internal API,  API stability is not guaranteed
///
/// TODO: This isn't actually beam search, function should probably be renamed
pub fn beam_search(
    graph: &dyn Graph,
    ep: &OrderedNode,
    k: usize,
    dist_calc: &impl DistCalculator,
    bitset: Option<&Visited>,
    prefetch_distance: Option<usize>,
    visited: &mut Visited,
) -> Vec<OrderedNode> {
    //let mut visited: HashSet<_> = HashSet::with_capacity(k);
    let mut candidates = BinaryHeap::with_capacity(k);
    visited.insert(ep.id);
    candidates.push(Reverse(ep.clone()));

    let mut results = BinaryHeap::with_capacity(k);
    if bitset.map(|bitset| bitset.contains(ep.id)).unwrap_or(true) {
        results.push(ep.clone());
    }

    while !candidates.is_empty() {
        let current = candidates.pop().expect("candidates is empty").0;
        let furthest = results
            .peek()
            .map(|node| node.dist)
            .unwrap_or(OrderedFloat(f32::INFINITY));

        // TODO: add an option to ignore the second condition for better performance.
        if current.dist > furthest && results.len() == k {
            break;
        }
        let neighbors = graph.neighbors(current.id);

        let furthest = results
            .peek()
            .map(|node| node.dist)
            .unwrap_or(OrderedFloat(f32::INFINITY));

        let unvisited_neighbors: Vec<_> = neighbors
            .iter()
            .filter(|&&neighbor| !visited.contains(neighbor))
            .copied()
            .collect();

        let process_neighbor = |neighbor: u32| {
            visited.insert(neighbor);
            let dist = dist_calc.distance(neighbor).into();
            if dist <= furthest || results.len() < k {
                if bitset
                    .map(|bitset| bitset.contains(neighbor))
                    .unwrap_or(true)
                {
                    if results.len() < k {
                        results.push((dist, neighbor).into());
                    } else if results.len() == k && dist < results.peek().unwrap().dist {
                        results.pop();
                        results.push((dist, neighbor).into());
                    }
                }
                candidates.push(Reverse((dist, neighbor).into()));
            }
        };
        process_neighbors_with_look_ahead(
            &unvisited_neighbors,
            process_neighbor,
            prefetch_distance,
            dist_calc,
        );
    }

    results.into_sorted_vec()
}

/// Greedy search over a graph
///
/// This searches for only one result, only used for finding the entry point
///
/// Parameters
/// ----------
/// graph : Graph
///    The graph to search.
/// start : u32
///   The index starting point.
/// query : &[f32]
///   The query vector.
///
/// Returns
/// -------
/// A ``(dist, node_id)`` pair.
///
/// WARNING: Internal API,  API stability is not guaranteed
pub fn greedy_search(
    graph: &dyn Graph,
    start: OrderedNode,
    dist_calc: &impl DistCalculator,
    prefetch_distance: Option<usize>,
) -> OrderedNode {
    let mut current = start.id;
    let mut closest_dist = start.dist.0;
    loop {
        let neighbors = graph.neighbors(current);
        let mut next = None;

        let process_neighbor = |neighbor: u32| {
            let dist = dist_calc.distance(neighbor);
            if dist < closest_dist {
                closest_dist = dist;
                next = Some(neighbor);
            }
        };
        process_neighbors_with_look_ahead(
            &neighbors,
            process_neighbor,
            prefetch_distance,
            dist_calc,
        );

        if let Some(next) = next {
            current = next;
        } else {
            break;
        }
    }

    OrderedNode::new(current, closest_dist.into())
}

#[cfg(test)]
mod tests {}