lance_index/vector/pq/
storage.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors

//! Product Quantization storage
//!
//! Used as storage backend for Graph based algorithms.

use std::{cmp::min, collections::HashMap, sync::Arc};

use arrow::datatypes::{self, UInt8Type};
use arrow_array::{
    cast::AsArray,
    types::{Float32Type, UInt64Type},
    FixedSizeListArray, RecordBatch, UInt64Array, UInt8Array,
};
use arrow_array::{Array, ArrayRef, ArrowPrimitiveType, PrimitiveArray};
use arrow_schema::{DataType, SchemaRef};
use async_trait::async_trait;
use deepsize::DeepSizeOf;
use lance_arrow::{FixedSizeListArrayExt, RecordBatchExt};
use lance_core::{Error, Result, ROW_ID};
use lance_file::{reader::FileReader, writer::FileWriter};
use lance_io::{
    object_store::ObjectStore,
    traits::{WriteExt, Writer},
    utils::read_message,
};
use lance_linalg::distance::{DistanceType, Dot, L2};
use lance_table::{format::SelfDescribingFileReader, io::manifest::ManifestDescribing};
use object_store::path::Path;
use prost::Message;
use serde::{Deserialize, Serialize};
use snafu::{location, Location};

use super::distance::{build_distance_table_dot, build_distance_table_l2, compute_pq_distance};
use super::ProductQuantizer;
use crate::vector::storage::STORAGE_METADATA_KEY;
use crate::{
    pb,
    vector::{
        pq::transform::PQTransformer,
        quantizer::{QuantizerMetadata, QuantizerStorage},
        storage::{DistCalculator, VectorStore},
        transform::Transformer,
        PQ_CODE_COLUMN,
    },
    IndexMetadata, INDEX_METADATA_SCHEMA_KEY,
};

pub const PQ_METADATA_KEY: &str = "lance:pq";

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ProductQuantizationMetadata {
    pub codebook_position: usize,
    pub num_bits: u32,
    pub num_sub_vectors: usize,
    pub dimension: usize,

    #[serde(skip)]
    pub codebook: Option<FixedSizeListArray>,

    // empty for old format
    pub codebook_tensor: Vec<u8>,
    pub transposed: bool,
}

impl DeepSizeOf for ProductQuantizationMetadata {
    fn deep_size_of_children(&self, _context: &mut deepsize::Context) -> usize {
        self.codebook
            .as_ref()
            .map(|codebook| codebook.get_array_memory_size())
            .unwrap_or(0)
    }
}

#[async_trait]
impl QuantizerMetadata for ProductQuantizationMetadata {
    async fn load(reader: &FileReader) -> Result<Self> {
        let metadata = reader
            .schema()
            .metadata
            .get(PQ_METADATA_KEY)
            .ok_or(Error::Index {
                message: format!(
                    "Reading PQ storage: metadata key {} not found",
                    PQ_METADATA_KEY
                ),
                location: location!(),
            })?;
        let mut metadata: Self = serde_json::from_str(metadata).map_err(|_| Error::Index {
            message: format!("Failed to parse PQ metadata: {}", metadata),
            location: location!(),
        })?;

        let codebook_tensor: pb::Tensor =
            read_message(reader.object_reader.as_ref(), metadata.codebook_position).await?;
        metadata.codebook = Some(FixedSizeListArray::try_from(&codebook_tensor)?);
        Ok(metadata)
    }
}

/// Product Quantization Storage
///
/// It stores PQ code, as well as the row ID to the original vectors.
///
/// It is possible to store additional metadata to accelerate filtering later.
///
/// TODO: support f16/f64 later.
#[derive(Clone, Debug)]
pub struct ProductQuantizationStorage {
    codebook: FixedSizeListArray,
    batch: RecordBatch,

    // Metadata
    num_bits: u32,
    num_sub_vectors: usize,
    dimension: usize,
    distance_type: DistanceType,

    // For easy access
    pq_code: Arc<UInt8Array>,
    row_ids: Arc<UInt64Array>,
}

impl DeepSizeOf for ProductQuantizationStorage {
    fn deep_size_of_children(&self, _context: &mut deepsize::Context) -> usize {
        self.codebook.get_array_memory_size()
            + self.batch.get_array_memory_size()
            + self.pq_code.get_array_memory_size()
            + self.row_ids.get_array_memory_size()
    }
}

impl PartialEq for ProductQuantizationStorage {
    fn eq(&self, other: &Self) -> bool {
        self.distance_type.eq(&other.distance_type)
            && self.codebook.eq(&other.codebook)
            && self.num_bits.eq(&other.num_bits)
            && self.num_sub_vectors.eq(&other.num_sub_vectors)
            && self.dimension.eq(&other.dimension)
            // Ignore the schema because they might have different metadata.
            && self.batch.columns().eq(other.batch.columns())
    }
}

impl ProductQuantizationStorage {
    pub fn new(
        codebook: FixedSizeListArray,
        mut batch: RecordBatch,
        num_bits: u32,
        num_sub_vectors: usize,
        dimension: usize,
        distance_type: DistanceType,
        transposed: bool,
    ) -> Result<Self> {
        let Some(row_ids) = batch.column_by_name(ROW_ID) else {
            return Err(Error::Index {
                message: "Row ID column not found from PQ storage".to_string(),
                location: location!(),
            });
        };
        let row_ids: Arc<UInt64Array> = row_ids
            .as_primitive_opt::<UInt64Type>()
            .ok_or(Error::Index {
                message: "Row ID column is not of type UInt64".to_string(),
                location: location!(),
            })?
            .clone()
            .into();

        if !transposed {
            let num_sub_vectors_in_byte = if num_bits == 4 {
                num_sub_vectors / 2
            } else {
                num_sub_vectors
            };
            let pq_col = batch[PQ_CODE_COLUMN].as_fixed_size_list();
            let transposed_code = transpose(
                pq_col.values().as_primitive::<UInt8Type>(),
                row_ids.len(),
                num_sub_vectors_in_byte,
            );
            let pq_code_fsl = Arc::new(FixedSizeListArray::try_new_from_values(
                transposed_code,
                num_sub_vectors_in_byte as i32,
            )?);
            batch = batch.replace_column_by_name(PQ_CODE_COLUMN, pq_code_fsl)?;
        }

        let pq_code = batch[PQ_CODE_COLUMN]
            .as_fixed_size_list()
            .values()
            .as_primitive()
            .clone()
            .into();

        let distance_type = match distance_type {
            DistanceType::Cosine => DistanceType::L2,
            _ => distance_type,
        };
        Ok(Self {
            codebook,
            batch,
            pq_code,
            row_ids,
            num_sub_vectors,
            num_bits,
            dimension,
            distance_type,
        })
    }

    pub fn batch(&self) -> &RecordBatch {
        &self.batch
    }

    /// Build a PQ storage from ProductQuantizer and a RecordBatch.
    ///
    /// Parameters
    /// ----------
    /// quantizer: ProductQuantizer
    ///    The quantizer used to transform the vectors.
    /// batch: RecordBatch
    ///   The batch of vectors to be transformed.
    /// vector_col: &str
    ///   The name of the column containing the vectors.
    pub async fn build(
        quantizer: ProductQuantizer,
        batch: &RecordBatch,
        vector_col: &str,
    ) -> Result<Self> {
        let codebook = quantizer.codebook.clone();
        let num_bits = quantizer.num_bits;
        let dimension = quantizer.dimension;
        let num_sub_vectors = quantizer.num_sub_vectors;
        let metric_type = quantizer.distance_type;
        let transform = PQTransformer::new(quantizer, vector_col, PQ_CODE_COLUMN);
        let batch = transform.transform(batch)?;
        Self::new(
            codebook,
            batch,
            num_bits,
            num_sub_vectors,
            dimension,
            metric_type,
            false,
        )
    }

    /// Load full PQ storage from disk.
    ///
    /// Parameters
    /// ----------
    /// object_store: &ObjectStore
    ///   The object store to load the storage from.
    /// path: &Path
    ///  The path to the storage.
    ///
    /// Returns
    /// --------
    /// Self
    ///
    /// Currently it loads everything in memory.
    /// TODO: support lazy loading later.
    pub async fn load(object_store: &ObjectStore, path: &Path) -> Result<Self> {
        let reader = FileReader::try_new_self_described(object_store, path, None).await?;
        let schema = reader.schema();

        let metadata_str = schema
            .metadata
            .get(INDEX_METADATA_SCHEMA_KEY)
            .ok_or(Error::Index {
                message: format!(
                    "Reading PQ storage: index key {} not found",
                    INDEX_METADATA_SCHEMA_KEY
                ),
                location: location!(),
            })?;
        let index_metadata: IndexMetadata =
            serde_json::from_str(metadata_str).map_err(|_| Error::Index {
                message: format!("Failed to parse index metadata: {}", metadata_str),
                location: location!(),
            })?;
        let distance_type: DistanceType =
            DistanceType::try_from(index_metadata.distance_type.as_str())?;

        let metadata = ProductQuantizationMetadata::load(&reader).await?;
        Self::load_partition(&reader, 0..reader.len(), distance_type, &metadata).await
    }

    pub fn schema(&self) -> SchemaRef {
        self.batch.schema()
    }

    pub fn get_row_ids(&self, ids: &[u32]) -> Vec<u64> {
        ids.iter()
            .map(|&id| self.row_ids.value(id as usize))
            .collect()
    }

    /// Write the PQ storage as a Lance partition to disk,
    /// and returns the number of rows written.
    ///
    pub async fn write_partition(
        &self,
        writer: &mut FileWriter<ManifestDescribing>,
    ) -> Result<usize> {
        let batch_size: usize = 10240; // TODO: make it configurable
        for offset in (0..self.batch.num_rows()).step_by(batch_size) {
            let length = min(batch_size, self.batch.num_rows() - offset);
            let slice = self.batch.slice(offset, length);
            writer.write(&[slice]).await?;
        }
        Ok(self.batch.num_rows())
    }

    /// Write the PQ storage to disk.
    pub async fn write_full(&self, writer: &mut FileWriter<ManifestDescribing>) -> Result<()> {
        let pos = writer.object_writer.tell().await?;
        let codebook_tensor = pb::Tensor::try_from(&self.codebook)?;
        writer
            .object_writer
            .write_protobuf(&codebook_tensor)
            .await?;

        self.write_partition(writer).await?;

        let metadata = ProductQuantizationMetadata {
            codebook_position: pos,
            num_bits: self.num_bits,
            num_sub_vectors: self.num_sub_vectors,
            dimension: self.dimension,
            codebook: None,
            codebook_tensor: Vec::new(),
            transposed: true,
        };

        let index_metadata = IndexMetadata {
            index_type: "PQ".to_string(),
            distance_type: self.distance_type.to_string(),
        };

        let mut schema_metadata = HashMap::new();
        schema_metadata.insert(
            PQ_METADATA_KEY.to_string(),
            serde_json::to_string(&metadata)?,
        );
        schema_metadata.insert(
            INDEX_METADATA_SCHEMA_KEY.to_string(),
            serde_json::to_string(&index_metadata)?,
        );
        writer.finish_with_metadata(&schema_metadata).await?;
        Ok(())
    }
}

pub fn transpose<T: ArrowPrimitiveType>(
    original: &PrimitiveArray<T>,
    num_rows: usize,
    num_columns: usize,
) -> PrimitiveArray<T>
where
    PrimitiveArray<T>: From<Vec<T::Native>>,
{
    if original.is_empty() {
        return original.clone();
    }

    let mut transposed_codes = vec![T::default_value(); original.len()];
    for (vec_idx, codes) in original.values().chunks_exact(num_columns).enumerate() {
        for (sub_vec_idx, code) in codes.iter().enumerate() {
            transposed_codes[sub_vec_idx * num_rows + vec_idx] = *code;
        }
    }

    transposed_codes.into()
}

#[async_trait]
impl QuantizerStorage for ProductQuantizationStorage {
    type Metadata = ProductQuantizationMetadata;
    /// Load a partition of PQ storage from disk.
    ///
    /// Parameters
    /// ----------
    /// - *reader: &FileReader
    async fn load_partition(
        reader: &FileReader,
        range: std::ops::Range<usize>,
        distance_type: DistanceType,
        metadata: &Self::Metadata,
    ) -> Result<Self> {
        // Hard coded to float32 for now
        let codebook = metadata
            .codebook
            .as_ref()
            .ok_or(Error::Index {
                message: "Codebook not found in PQ metadata".to_string(),
                location: location!(),
            })?
            .values()
            .as_primitive::<Float32Type>()
            .clone();

        let codebook =
            FixedSizeListArray::try_new_from_values(codebook, metadata.dimension as i32)?;

        let schema = reader.schema();
        let batch = reader.read_range(range, schema).await?;

        Self::new(
            codebook,
            batch,
            metadata.num_bits,
            metadata.num_sub_vectors,
            metadata.dimension,
            distance_type,
            metadata.transposed,
        )
    }
}

impl VectorStore for ProductQuantizationStorage {
    type DistanceCalculator<'a> = PQDistCalculator;

    fn try_from_batch(batch: RecordBatch, distance_type: DistanceType) -> Result<Self>
    where
        Self: Sized,
    {
        let metadata_json = batch
            .schema_ref()
            .metadata()
            .get(STORAGE_METADATA_KEY)
            .ok_or(Error::Index {
                message: "Metadata not found in schema".to_string(),
                location: location!(),
            })?;
        let metadata: ProductQuantizationMetadata = serde_json::from_str(metadata_json)?;

        // now it supports only Float32Type
        let codebook_tensor = pb::Tensor::decode(metadata.codebook_tensor.as_slice())?;
        let codebook = FixedSizeListArray::try_from(&codebook_tensor)?;

        Self::new(
            codebook,
            batch,
            metadata.num_bits,
            metadata.num_sub_vectors,
            metadata.dimension,
            distance_type,
            metadata.transposed,
        )
    }

    fn to_batches(&self) -> Result<impl Iterator<Item = RecordBatch>> {
        let codebook = pb::Tensor::try_from(&self.codebook)?.encode_to_vec();
        let metadata = ProductQuantizationMetadata {
            codebook_position: 0, // deprecated in new format
            num_bits: self.num_bits,
            num_sub_vectors: self.num_sub_vectors,
            dimension: self.dimension,
            codebook: None,
            codebook_tensor: codebook,
            transposed: true, // we always transpose the pq codes for efficiency
        };

        let metadata_json = serde_json::to_string(&metadata)?;
        let metadata = HashMap::from_iter(vec![(STORAGE_METADATA_KEY.to_string(), metadata_json)]);
        Ok([self.batch.with_metadata(metadata)?].into_iter())
    }

    fn append_batch(&self, _batch: RecordBatch, _vector_column: &str) -> Result<Self> {
        unimplemented!()
    }

    fn schema(&self) -> &SchemaRef {
        self.batch.schema_ref()
    }

    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    fn len(&self) -> usize {
        self.batch.num_rows()
    }

    fn distance_type(&self) -> DistanceType {
        self.distance_type
    }

    fn row_id(&self, id: u32) -> u64 {
        self.row_ids.values()[id as usize]
    }

    fn row_ids(&self) -> impl Iterator<Item = &u64> {
        self.row_ids.values().iter()
    }

    fn dist_calculator(&self, query: ArrayRef) -> Self::DistanceCalculator<'_> {
        match self.codebook.value_type() {
            DataType::Float16 => PQDistCalculator::new(
                self.codebook
                    .values()
                    .as_primitive::<datatypes::Float16Type>()
                    .values(),
                self.num_bits,
                self.num_sub_vectors,
                self.pq_code.clone(),
                query.as_primitive::<datatypes::Float16Type>().values(),
                self.distance_type,
            ),
            DataType::Float32 => PQDistCalculator::new(
                self.codebook
                    .values()
                    .as_primitive::<datatypes::Float32Type>()
                    .values(),
                self.num_bits,
                self.num_sub_vectors,
                self.pq_code.clone(),
                query.as_primitive::<datatypes::Float32Type>().values(),
                self.distance_type,
            ),
            DataType::Float64 => PQDistCalculator::new(
                self.codebook
                    .values()
                    .as_primitive::<datatypes::Float64Type>()
                    .values(),
                self.num_bits,
                self.num_sub_vectors,
                self.pq_code.clone(),
                query.as_primitive::<datatypes::Float64Type>().values(),
                self.distance_type,
            ),
            _ => unimplemented!("Unsupported data type: {:?}", self.codebook.value_type()),
        }
    }

    fn dist_calculator_from_id(&self, _: u32) -> Self::DistanceCalculator<'_> {
        todo!("distance_between not implemented for PQ storage")
    }

    fn distance_between(&self, _: u32, _: u32) -> f32 {
        todo!("distance_between not implemented for PQ storage")
    }
}

/// Distance calculator backed by PQ code.
pub struct PQDistCalculator {
    distance_table: Vec<f32>,
    pq_code: Arc<UInt8Array>,
    num_sub_vectors: usize,
    num_bits: u32,
    distance_type: DistanceType,
}

impl PQDistCalculator {
    fn new<T: L2 + Dot>(
        codebook: &[T],
        num_bits: u32,
        num_sub_vectors: usize,
        pq_code: Arc<UInt8Array>,
        query: &[T],
        distance_type: DistanceType,
    ) -> Self {
        let distance_table = match distance_type {
            DistanceType::L2 | DistanceType::Cosine => {
                build_distance_table_l2(codebook, num_bits, num_sub_vectors, query)
            }
            DistanceType::Dot => {
                build_distance_table_dot(codebook, num_bits, num_sub_vectors, query)
            }
            _ => unimplemented!("DistanceType is not supported: {:?}", distance_type),
        };
        Self {
            distance_table,
            num_sub_vectors,
            pq_code,
            num_bits,
            distance_type,
        }
    }

    fn get_pq_code(&self, id: u32) -> Vec<usize> {
        let num_sub_vectors_in_byte = if self.num_bits == 4 {
            self.num_sub_vectors / 2
        } else {
            self.num_sub_vectors
        };
        let num_vectors = self.pq_code.len() / num_sub_vectors_in_byte;
        self.pq_code
            .values()
            .iter()
            .skip(id as usize)
            .step_by(num_vectors)
            .map(|&c| c as usize)
            .collect()
    }
}

impl DistCalculator for PQDistCalculator {
    fn distance(&self, id: u32) -> f32 {
        let num_centroids = 2_usize.pow(self.num_bits);
        let pq_code = self.get_pq_code(id);

        if self.num_bits == 4 {
            pq_code
                .into_iter()
                .enumerate()
                .map(|(i, c)| {
                    let current_idx = c & 0x0F;
                    let next_idx = c >> 4;
                    self.distance_table[2 * i * num_centroids + current_idx]
                        + self.distance_table[(2 * i + 1) * num_centroids + next_idx]
                })
                .sum()
        } else {
            pq_code
                .into_iter()
                .enumerate()
                .map(|(i, c)| self.distance_table[i * num_centroids + c])
                .sum()
        }
    }

    fn distance_all(&self) -> Vec<f32> {
        match self.distance_type {
            DistanceType::L2 => compute_pq_distance(
                &self.distance_table,
                self.num_bits,
                self.num_sub_vectors,
                self.pq_code.values(),
            ),
            DistanceType::Cosine => {
                // it seems we implemented cosine distance at some version,
                // but from now on, we should use normalized L2 distance.
                debug_assert!(
                    false,
                    "cosine distance should be converted to normalized L2 distance"
                );
                // L2 over normalized vectors:  ||x - y|| = x^2 + y^2 - 2 * xy = 1 + 1 - 2 * xy = 2 * (1 - xy)
                // Cosine distance: 1 - |xy| / (||x|| * ||y||) = 1 - xy / (x^2 * y^2) = 1 - xy / (1 * 1) = 1 - xy
                // Therefore, Cosine = L2 / 2
                let l2_dists = compute_pq_distance(
                    &self.distance_table,
                    self.num_bits,
                    self.num_sub_vectors,
                    self.pq_code.values(),
                );
                l2_dists.into_iter().map(|v| v / 2.0).collect()
            }
            DistanceType::Dot => compute_pq_distance(
                &self.distance_table,
                self.num_bits,
                self.num_sub_vectors,
                self.pq_code.values(),
            ),
            _ => unimplemented!("distance type is not supported: {:?}", self.distance_type),
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::vector::storage::StorageBuilder;

    use super::*;

    use arrow_array::Float32Array;
    use arrow_schema::{DataType, Field, Schema as ArrowSchema};
    use lance_arrow::FixedSizeListArrayExt;
    use lance_core::datatypes::Schema;
    use lance_core::ROW_ID_FIELD;

    const DIM: usize = 32;
    const TOTAL: usize = 512;
    const NUM_SUB_VECTORS: usize = 16;

    async fn create_pq_storage() -> ProductQuantizationStorage {
        let codebook = Float32Array::from_iter_values((0..256 * DIM).map(|v| v as f32));
        let codebook = FixedSizeListArray::try_new_from_values(codebook, DIM as i32).unwrap();
        let pq = ProductQuantizer::new(NUM_SUB_VECTORS, 8, DIM, codebook, DistanceType::L2);

        let schema = ArrowSchema::new(vec![
            Field::new(
                "vectors",
                DataType::FixedSizeList(
                    Field::new_list_field(DataType::Float32, true).into(),
                    DIM as i32,
                ),
                true,
            ),
            ROW_ID_FIELD.clone(),
        ]);
        let vectors = Float32Array::from_iter_values((0..TOTAL * DIM).map(|v| v as f32));
        let row_ids = UInt64Array::from_iter_values((0..TOTAL).map(|v| v as u64));
        let fsl = FixedSizeListArray::try_new_from_values(vectors, DIM as i32).unwrap();
        let batch =
            RecordBatch::try_new(schema.into(), vec![Arc::new(fsl), Arc::new(row_ids)]).unwrap();

        StorageBuilder::new("vectors".to_owned(), pq.distance_type, pq)
            .build(&batch)
            .unwrap()
    }

    #[tokio::test]
    async fn test_build_pq_storage() {
        let storage = create_pq_storage().await;
        assert_eq!(storage.len(), TOTAL);
        assert_eq!(storage.num_sub_vectors, NUM_SUB_VECTORS);
        assert_eq!(storage.codebook.values().len(), 256 * DIM);
        assert_eq!(storage.pq_code.len(), TOTAL * NUM_SUB_VECTORS);
        assert_eq!(storage.row_ids.len(), TOTAL);
    }

    #[tokio::test]
    async fn test_read_write_pq_storage() {
        let storage = create_pq_storage().await;

        let store = ObjectStore::memory();
        let path = Path::from("pq_storage");
        let schema = Schema::try_from(storage.schema().as_ref()).unwrap();
        let mut file_writer = FileWriter::<ManifestDescribing>::try_new(
            &store,
            &path,
            schema.clone(),
            &Default::default(),
        )
        .await
        .unwrap();

        storage.write_full(&mut file_writer).await.unwrap();

        let storage2 = ProductQuantizationStorage::load(&store, &path)
            .await
            .unwrap();

        assert_eq!(storage, storage2);
    }

    #[tokio::test]
    async fn test_distance_all() {
        let storage = create_pq_storage().await;
        let query = Arc::new(Float32Array::from_iter_values((0..DIM).map(|v| v as f32)));
        let dist_calc = storage.dist_calculator(query);
        let expected = (0..storage.len())
            .map(|id| dist_calc.distance(id as u32))
            .collect::<Vec<_>>();
        let distances = dist_calc.distance_all();
        assert_eq!(distances, expected);
    }
}