lance_index/vector/
transform.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors

//! Vector Transforms
//!

use std::fmt::Debug;
use std::sync::Arc;

use arrow::datatypes::UInt64Type;
use arrow_array::types::{Float16Type, Float32Type, Float64Type};
use arrow_array::UInt64Array;
use arrow_array::{cast::AsArray, Array, ArrowPrimitiveType, RecordBatch, UInt32Array};
use arrow_schema::{DataType, Field, Schema};
use lance_arrow::RecordBatchExt;
use num_traits::Float;
use snafu::{location, Location};

use lance_core::{Error, Result, ROW_ID, ROW_ID_FIELD};
use lance_linalg::kernels::normalize_fsl;
use tracing::instrument;

/// Transform of a Vector Matrix.
///
///
pub trait Transformer: Debug + Send + Sync {
    /// Transform a [`RecordBatch`] of vectors
    ///
    fn transform(&self, batch: &RecordBatch) -> Result<RecordBatch>;
}

/// Normalize Transformer
///
/// L2 Normalize each vector.
#[derive(Debug)]
pub struct NormalizeTransformer {
    input_column: String,
    output_column: Option<String>,
}

impl NormalizeTransformer {
    pub fn new(column: impl AsRef<str>) -> Self {
        Self {
            input_column: column.as_ref().to_owned(),
            output_column: None,
        }
    }

    /// Create Normalize output transform that will be stored in a different column.
    ///
    pub fn new_with_output(input_column: impl AsRef<str>, output_column: impl AsRef<str>) -> Self {
        Self {
            input_column: input_column.as_ref().to_owned(),
            output_column: Some(output_column.as_ref().to_owned()),
        }
    }
}

impl Transformer for NormalizeTransformer {
    #[instrument(name = "NormalizeTransformer::transform", level = "debug", skip_all)]
    fn transform(&self, batch: &RecordBatch) -> Result<RecordBatch> {
        let arr = batch
            .column_by_name(&self.input_column)
            .ok_or(Error::Index {
                message: format!(
                    "Normalize Transform: column {} not found in RecordBatch",
                    self.input_column
                ),
                location: location!(),
            })?;

        let data = arr.as_fixed_size_list();
        let norm = normalize_fsl(data)?;
        let transformed = Arc::new(norm);

        if let Some(output_column) = &self.output_column {
            let field = Field::new(output_column, transformed.data_type().clone(), true);
            Ok(batch.try_with_column(field, transformed)?)
        } else {
            Ok(batch.replace_column_by_name(&self.input_column, transformed)?)
        }
    }
}

/// Only keep the vectors that is finite number, filter out NaN and Inf.
#[derive(Debug)]
pub(crate) struct KeepFiniteVectors {
    column: String,
}

impl KeepFiniteVectors {
    pub fn new(column: impl AsRef<str>) -> Self {
        Self {
            column: column.as_ref().to_owned(),
        }
    }
}

fn is_all_finite<T: ArrowPrimitiveType>(arr: &dyn Array) -> bool
where
    T::Native: Float,
{
    !arr.as_primitive::<T>()
        .values()
        .iter()
        .any(|&v| !v.is_finite())
}

impl Transformer for KeepFiniteVectors {
    #[instrument(name = "KeepFiniteVectors::transform", level = "debug", skip_all)]
    fn transform(&self, batch: &RecordBatch) -> Result<RecordBatch> {
        let arr = batch.column_by_name(&self.column).ok_or(Error::Index {
            message: format!(
                "KeepFiniteVectors: column {} not found in RecordBatch",
                self.column
            ),
            location: location!(),
        })?;

        let data = match arr.data_type() {
            DataType::FixedSizeList(_, _) => arr.as_fixed_size_list(),
            DataType::List(_) => arr.as_list::<i32>().values().as_fixed_size_list(),
            _ => {
                return Err(Error::Index {
                    message: format!(
                        "KeepFiniteVectors: column {} is not a fixed size list: {}",
                        self.column,
                        arr.data_type()
                    ),
                    location: location!(),
                })
            }
        };

        let mut valid = Vec::with_capacity(batch.num_rows());
        data.iter().enumerate().for_each(|(idx, arr)| {
            if let Some(data) = arr {
                let is_valid = match data.data_type() {
                    DataType::Float16 => is_all_finite::<Float16Type>(&data),
                    DataType::Float32 => is_all_finite::<Float32Type>(&data),
                    DataType::Float64 => is_all_finite::<Float64Type>(&data),
                    _ => false,
                };
                if is_valid {
                    valid.push(idx as u32);
                }
            };
        });
        if valid.len() < batch.num_rows() {
            let indices = UInt32Array::from(valid);
            Ok(batch.take(&indices)?)
        } else {
            Ok(batch.clone())
        }
    }
}

#[derive(Debug)]
pub struct DropColumn {
    column: String,
}

impl DropColumn {
    pub fn new(column: &str) -> Self {
        Self {
            column: column.to_owned(),
        }
    }
}

impl Transformer for DropColumn {
    fn transform(&self, batch: &RecordBatch) -> Result<RecordBatch> {
        Ok(batch.drop_column(&self.column)?)
    }
}

#[derive(Debug)]
pub struct Flatten {
    column: String,
}

impl Flatten {
    pub fn new(column: &str) -> Self {
        Self {
            column: column.to_owned(),
        }
    }
}

impl Transformer for Flatten {
    fn transform(&self, batch: &RecordBatch) -> Result<RecordBatch> {
        let arr = batch.column_by_name(&self.column).ok_or(Error::Index {
            message: format!("Flatten: column {} not found in RecordBatch", self.column),
            location: location!(),
        })?;
        match arr.data_type() {
            DataType::FixedSizeList(_, _) => {
                // do nothing
                Ok(batch.clone())
            }
            DataType::List(_) => {
                let row_ids = batch[ROW_ID].as_primitive::<UInt64Type>();
                let vectors = arr.as_list::<i32>();

                let row_ids = row_ids.values().iter().zip(vectors.iter()).flat_map(
                    |(row_id, multivector)| {
                        std::iter::repeat(*row_id)
                            .take(multivector.map(|multivec| multivec.len()).unwrap_or(0))
                    },
                );
                let row_ids = UInt64Array::from_iter_values(row_ids);
                let vectors = vectors.values().as_fixed_size_list().clone();
                let schema = Arc::new(Schema::new(vec![
                    ROW_ID_FIELD.clone(),
                    Field::new(self.column.as_str(), vectors.data_type().clone(), true),
                ]));
                let batch =
                    RecordBatch::try_new(schema, vec![Arc::new(row_ids), Arc::new(vectors)])?;
                Ok(batch)
            }
            _ => Err(Error::Index {
                message: format!(
                    "Flatten: column {} is not a vector: {}",
                    self.column,
                    arr.data_type()
                ),
                location: location!(),
            }),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use approx::assert_relative_eq;
    use arrow_array::{FixedSizeListArray, Float16Array, Float32Array, Int32Array};
    use arrow_schema::Schema;
    use half::f16;
    use lance_arrow::*;

    #[tokio::test]
    async fn test_normalize_transformer_f32() {
        let data = Float32Array::from_iter_values([1.0, 1.0, 2.0, 2.0].into_iter());
        let fsl = FixedSizeListArray::try_new_from_values(data, 2).unwrap();
        let schema = Schema::new(vec![Field::new(
            "v",
            DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float32, true)), 2),
            true,
        )]);
        let batch = RecordBatch::try_new(schema.into(), vec![Arc::new(fsl)]).unwrap();
        let transformer = NormalizeTransformer::new("v");
        let output = transformer.transform(&batch).unwrap();
        let actual = output.column_by_name("v").unwrap();
        let act_fsl = actual.as_fixed_size_list();
        assert_eq!(act_fsl.len(), 2);
        assert_relative_eq!(
            act_fsl.value(0).as_primitive::<Float32Type>().values()[..],
            [1.0 / 2.0_f32.sqrt(); 2]
        );
        assert_relative_eq!(
            act_fsl.value(1).as_primitive::<Float32Type>().values()[..],
            [2.0 / 8.0_f32.sqrt(); 2]
        );
    }

    #[tokio::test]
    async fn test_normalize_transformer_16() {
        let data =
            Float16Array::from_iter_values([1.0_f32, 1.0, 2.0, 2.0].into_iter().map(f16::from_f32));
        let fsl = FixedSizeListArray::try_new_from_values(data, 2).unwrap();
        let schema = Schema::new(vec![Field::new(
            "v",
            DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float16, true)), 2),
            true,
        )]);
        let batch = RecordBatch::try_new(schema.into(), vec![Arc::new(fsl)]).unwrap();
        let transformer = NormalizeTransformer::new("v");
        let output = transformer.transform(&batch).unwrap();
        let actual = output.column_by_name("v").unwrap();
        let act_fsl = actual.as_fixed_size_list();
        assert_eq!(act_fsl.len(), 2);
        let expect_1 = [f16::from_f32_const(1.0) / f16::from_f32_const(2.0).sqrt(); 2];
        act_fsl
            .value(0)
            .as_primitive::<Float16Type>()
            .values()
            .iter()
            .zip(expect_1.iter())
            .for_each(|(a, b)| assert!(a - b <= f16::epsilon()));

        let expect_2 = [f16::from_f32_const(2.0) / f16::from_f32_const(8.0).sqrt(); 2];
        act_fsl
            .value(1)
            .as_primitive::<Float16Type>()
            .values()
            .iter()
            .zip(expect_2.iter())
            .for_each(|(a, b)| assert!(a - b <= f16::epsilon()));
    }

    #[tokio::test]
    async fn test_normalize_transformer_with_output_column() {
        let data = Float32Array::from_iter_values([1.0, 1.0, 2.0, 2.0].into_iter());
        let fsl = FixedSizeListArray::try_new_from_values(data, 2).unwrap();
        let schema = Schema::new(vec![Field::new(
            "v",
            DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float32, true)), 2),
            true,
        )]);
        let batch = RecordBatch::try_new(schema.into(), vec![Arc::new(fsl.clone())]).unwrap();
        let transformer = NormalizeTransformer::new_with_output("v", "o");
        let output = transformer.transform(&batch).unwrap();
        let input = output.column_by_name("v").unwrap();
        assert_eq!(input.as_ref(), &fsl);
        let actual = output.column_by_name("o").unwrap();
        let act_fsl = actual.as_fixed_size_list();
        assert_eq!(act_fsl.len(), 2);
        assert_relative_eq!(
            act_fsl.value(0).as_primitive::<Float32Type>().values()[..],
            [1.0 / 2.0_f32.sqrt(); 2]
        );
        assert_relative_eq!(
            act_fsl.value(1).as_primitive::<Float32Type>().values()[..],
            [2.0 / 8.0_f32.sqrt(); 2]
        );
    }

    #[tokio::test]
    async fn test_drop_column() {
        let i32_array = Int32Array::from_iter_values([1, 2].into_iter());
        let data = Float32Array::from_iter_values([1.0, 1.0, 2.0, 2.0].into_iter());
        let fsl = FixedSizeListArray::try_new_from_values(data, 2).unwrap();
        let schema = Schema::new(vec![
            Field::new("i32", DataType::Int32, false),
            Field::new(
                "v",
                DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float32, true)), 2),
                true,
            ),
        ]);
        let batch =
            RecordBatch::try_new(schema.into(), vec![Arc::new(i32_array), Arc::new(fsl)]).unwrap();
        let transformer = DropColumn::new("v");
        let output = transformer.transform(&batch).unwrap();
        assert!(output.column_by_name("v").is_none());

        let dup_drop_result = transformer.transform(&output);
        assert!(dup_drop_result.is_ok());
    }
}