lance_index/vector/pq/
distance.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors

use core::panic;
use std::cmp::min;

use itertools::Itertools;
use lance_linalg::distance::{dot_distance_batch, l2_distance_batch, Dot, L2};
use lance_linalg::simd::u8::u8x16;
use lance_linalg::simd::{Shuffle, SIMD};
use lance_table::utils::LanceIteratorExtension;

use super::{num_centroids, utils::get_sub_vector_centroids};

/// Build a Distance Table from the query to each PQ centroid
/// using L2 distance.
pub fn build_distance_table_l2<T: L2>(
    codebook: &[T],
    num_bits: u32,
    num_sub_vectors: usize,
    query: &[T],
) -> Vec<f32> {
    match num_bits {
        4 => build_distance_table_l2_impl::<4, T>(codebook, num_sub_vectors, query),
        8 => build_distance_table_l2_impl::<8, T>(codebook, num_sub_vectors, query),
        _ => panic!("Unsupported number of bits: {}", num_bits),
    }
}

#[inline]
pub fn build_distance_table_l2_impl<const NUM_BITS: u32, T: L2>(
    codebook: &[T],
    num_sub_vectors: usize,
    query: &[T],
) -> Vec<f32> {
    let dimension = query.len();
    let sub_vector_length = dimension / num_sub_vectors;
    let num_centroids = 2_usize.pow(NUM_BITS);
    query
        .chunks_exact(sub_vector_length)
        .enumerate()
        .flat_map(|(i, sub_vec)| {
            let subvec_centroids =
                get_sub_vector_centroids::<NUM_BITS, _>(codebook, dimension, num_sub_vectors, i);
            l2_distance_batch(sub_vec, subvec_centroids, sub_vector_length)
        })
        .exact_size(num_sub_vectors * num_centroids)
        .collect()
}

/// Build a Distance Table from the query to each PQ centroid
/// using Dot distance.
pub fn build_distance_table_dot<T: Dot>(
    codebook: &[T],
    num_bits: u32,
    num_sub_vectors: usize,
    query: &[T],
) -> Vec<f32> {
    match num_bits {
        4 => build_distance_table_dot_impl::<4, T>(codebook, num_sub_vectors, query),
        8 => build_distance_table_dot_impl::<8, T>(codebook, num_sub_vectors, query),
        _ => panic!("Unsupported number of bits: {}", num_bits),
    }
}

#[inline]
pub fn build_distance_table_dot_impl<const NUM_BITS: u32, T: Dot>(
    codebook: &[T],
    num_sub_vectors: usize,
    query: &[T],
) -> Vec<f32> {
    let dimension = query.len();
    let sub_vector_length = dimension / num_sub_vectors;
    let num_centroids = 2_usize.pow(NUM_BITS);
    query
        .chunks_exact(sub_vector_length)
        .enumerate()
        .flat_map(|(i, sub_vec)| {
            let subvec_centroids =
                get_sub_vector_centroids::<NUM_BITS, _>(codebook, dimension, num_sub_vectors, i);
            dot_distance_batch(sub_vec, subvec_centroids, sub_vector_length)
        })
        .exact_size(num_sub_vectors * num_centroids)
        .collect()
}

/// Compute L2 distance from the query to all code.
///
/// Parameters
/// ----------
/// - distance_table: the pre-computed L2 distance table.
///   It is a flatten array of [num_sub_vectors, num_centroids] f32.
/// - num_bits: the number of bits used for PQ.
/// - num_sub_vectors: the number of sub-vectors.
/// - code: the transposed PQ code to be used to compute the distances.
///
/// Returns
/// -------
///  The squared L2 distance.
///
#[inline]
pub(super) fn compute_pq_distance(
    distance_table: &[f32],
    num_bits: u32,
    num_sub_vectors: usize,
    code: &[u8],
) -> Vec<f32> {
    if code.is_empty() {
        return Vec::new();
    }
    if num_bits == 4 {
        return compute_pq_distance_4bit(distance_table, num_sub_vectors, code);
    }
    // here `code` has been transposed,
    // so code[i][j] is the code of i-th sub-vector of the j-th vector,
    // and `code` is a flatten array of [num_sub_vectors, num_vectors] u8,
    // so code[i * num_vectors + j] is the code of i-th sub-vector of the j-th vector.
    let num_vectors = code.len() / num_sub_vectors;
    let mut distances = vec![0.0_f32; num_vectors];
    // it must be 8
    const NUM_CENTROIDS: usize = 2_usize.pow(8);
    for (sub_vec_idx, vec_indices) in code.chunks_exact(num_vectors).enumerate() {
        let dist_table =
            &distance_table[sub_vec_idx * NUM_CENTROIDS..(sub_vec_idx + 1) * NUM_CENTROIDS];
        debug_assert_eq!(vec_indices.len(), distances.len());
        vec_indices
            .iter()
            .zip(distances.iter_mut())
            .for_each(|(&centroid_idx, sum)| {
                *sum += dist_table[centroid_idx as usize];
            });
    }

    distances
}

#[inline]
pub(super) fn compute_pq_distance_4bit(
    distance_table: &[f32],
    num_sub_vectors: usize,
    code: &[u8],
) -> Vec<f32> {
    let (qmin, qmax, distance_table) = quantize_distance_table(distance_table);
    let num_vectors = code.len() * 2 / num_sub_vectors;
    // store the distances in f32 to avoid overflow
    let mut distances = vec![0.0f32; num_vectors];
    const NUM_CENTROIDS: usize = 2_usize.pow(4);
    for (sub_vec_idx, vec_indices) in code.chunks_exact(num_vectors).enumerate() {
        debug_assert_eq!(vec_indices.len(), distances.len());
        let origin_dist_table = unsafe {
            u8x16::load_unaligned(distance_table.as_ptr().add(sub_vec_idx * 2 * NUM_CENTROIDS))
        };
        let origin_next_dist_table = unsafe {
            u8x16::load_unaligned(
                distance_table
                    .as_ptr()
                    .add((sub_vec_idx * 2 + 1) * NUM_CENTROIDS),
            )
        };
        for i in (0..num_vectors - NUM_CENTROIDS + 1).step_by(NUM_CENTROIDS) {
            let vec_indices = unsafe { u8x16::load_unaligned(vec_indices.as_ptr().add(i)) };
            let distances = &mut distances[i..i + NUM_CENTROIDS];

            // compute current distances
            let current_indices = vec_indices.bit_and(0x0F);
            let dist_table = origin_dist_table;
            let results = dist_table.shuffle(current_indices);
            debug_assert_eq!(dist_table.as_array(), origin_dist_table.as_array());

            // compute next distances
            let next_indices = vec_indices.right_shift::<4>();
            let next_dist_table = origin_next_dist_table;
            let results = results + next_dist_table.shuffle(next_indices);

            results
                .as_array()
                .into_iter()
                .zip(distances.iter_mut())
                .for_each(|(d, sum)| {
                    *sum += d as f32;
                });
        }
        let remainder = num_vectors % NUM_CENTROIDS;
        if remainder > 0 {
            let vec_indices = &vec_indices[num_vectors - remainder..];
            let distances = &mut distances[num_vectors - remainder..];
            let dist_table = &distance_table[sub_vec_idx * 2 * NUM_CENTROIDS..];
            let next_dist_table = &distance_table[(sub_vec_idx * 2 + 1) * NUM_CENTROIDS..];
            for (i, &centroid_idx) in vec_indices.iter().enumerate() {
                let current_idx = centroid_idx & 0xF;
                let next_idx = centroid_idx >> 4;
                distances[i] += dist_table[current_idx as usize] as f32;
                distances[i] += next_dist_table[next_idx as usize] as f32;
            }
        }
    }

    // need to dequantize the distances
    // to make the distances comparable to the others from the other partitions
    distances.iter_mut().for_each(|d| {
        *d = *d * (qmax - qmin) / 255.0 + qmin;
    });
    distances
}

// Quantize the distance table to u8,
// map distance `d` to `(d-qmin) * 255 / (qmax-qmin)`m
// used for only 4bit PQ so num_centroids must be 16
// returns (qmin, qmax, quantized_distance_table)
#[inline]
fn quantize_distance_table(distance_table: &[f32]) -> (f32, f32, Vec<u8>) {
    const NUM_CENTROIDS: usize = 16;
    let qmin = distance_table.iter().cloned().fold(f32::INFINITY, f32::min);
    let qmax = distance_table
        .chunks(NUM_CENTROIDS)
        .tuple_windows()
        .map(|(a, b)| {
            let a_max = a.iter().cloned().fold(f32::NEG_INFINITY, f32::max);
            let b_max = b.iter().cloned().fold(f32::NEG_INFINITY, f32::max);
            a_max + b_max
        })
        .fold(f32::NEG_INFINITY, f32::max);
    let quantized_dist_table = distance_table
        .iter()
        .map(|&d| ((d - qmin) * 255.0 / (qmax - qmin)).ceil() as u8)
        .collect();

    (qmin, qmax, quantized_dist_table)
}

/// Compute L2 distance from the query to all code without transposing the code.
/// for testing only
///
/// Type parameters
/// ---------------
/// - C: the tile size of code-book to run at once.
/// - V: the tile size of PQ code to run at once.
///
#[allow(dead_code)]
fn compute_l2_distance_without_transposing<const C: usize, const V: usize>(
    distance_table: &[f32],
    num_bits: u32,
    num_sub_vectors: usize,
    code: &[u8],
) -> Vec<f32> {
    let num_centroids = num_centroids(num_bits);
    let iter = code.chunks_exact(num_sub_vectors * V);
    let distances = iter.clone().flat_map(|c| {
        let mut sums = [0.0_f32; V];
        for i in (0..num_sub_vectors).step_by(C) {
            for (vec_idx, sum) in sums.iter_mut().enumerate() {
                let vec_start = vec_idx * num_sub_vectors;
                let s = c[vec_start + i..]
                    .iter()
                    .take(min(C, num_sub_vectors - i))
                    .enumerate()
                    .map(|(k, c)| distance_table[(i + k) * num_centroids + *c as usize])
                    .sum::<f32>();
                *sum += s;
            }
        }
        sums.into_iter()
    });
    // Remainder
    let remainder = iter.remainder().chunks(num_sub_vectors).map(|c| {
        c.iter()
            .enumerate()
            .map(|(sub_vec_idx, code)| distance_table[sub_vec_idx * num_centroids + *code as usize])
            .sum::<f32>()
    });
    distances.chain(remainder).collect()
}

#[cfg(test)]
mod tests {
    use crate::vector::pq::storage::transpose;

    use super::*;
    use arrow_array::UInt8Array;

    #[test]
    fn test_compute_on_transposed_codes() {
        let num_vectors = 100;
        let num_sub_vectors = 4;
        let num_bits = 8;
        let dimension = 16;
        let codebook =
            Vec::from_iter((0..num_sub_vectors * num_vectors * dimension).map(|v| v as f32));
        let query = Vec::from_iter((0..dimension).map(|v| v as f32));
        let distance_table = build_distance_table_l2(&codebook, num_bits, num_sub_vectors, &query);

        let pq_codes = Vec::from_iter((0..num_vectors * num_sub_vectors).map(|v| v as u8));
        let pq_codes = UInt8Array::from_iter_values(pq_codes);
        let transposed_codes = transpose(&pq_codes, num_vectors, num_sub_vectors);
        let distances = compute_pq_distance(
            &distance_table,
            num_bits,
            num_sub_vectors,
            transposed_codes.values(),
        );
        let expected = compute_l2_distance_without_transposing::<4, 1>(
            &distance_table,
            num_bits,
            num_sub_vectors,
            pq_codes.values(),
        );
        assert_eq!(distances, expected);
    }
}