lance_index/vector/
utils.rsuse arrow::{
array::AsArray,
datatypes::{Float16Type, Float32Type, Float64Type},
};
use arrow_array::{Array, FixedSizeListArray};
use arrow_schema::{DataType, Field};
use lance_core::{Error, Result};
use lance_io::encodings::plain::bytes_to_array;
use prost::bytes;
use snafu::{location, Location};
use std::{ops::Range, sync::Arc};
use super::pb;
use crate::pb::Tensor;
#[inline]
#[allow(dead_code)]
pub(crate) fn prefetch_arrow_array(array: &dyn Array) -> Result<()> {
match array.data_type() {
DataType::FixedSizeList(_, _) => {
let array = array.as_fixed_size_list();
return prefetch_arrow_array(array.values());
}
DataType::Float16 => {
let array = array.as_primitive::<Float16Type>();
do_prefetch(array.values().as_ptr_range())
}
DataType::Float32 => {
let array = array.as_primitive::<Float32Type>();
do_prefetch(array.values().as_ptr_range())
}
DataType::Float64 => {
let array = array.as_primitive::<Float64Type>();
do_prefetch(array.values().as_ptr_range())
}
_ => {
return Err(Error::io(
format!("unsupported prefetch on {} type", array.data_type()),
location!(),
));
}
}
Ok(())
}
#[inline]
pub(crate) fn do_prefetch<T>(ptrs: Range<*const T>) {
unsafe {
let (ptr, end_ptr) = (ptrs.start as *const i8, ptrs.end as *const i8);
let mut current_ptr = ptr;
while current_ptr < end_ptr {
const CACHE_LINE_SIZE: usize = 64;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
{
use core::arch::x86_64::{_mm_prefetch, _MM_HINT_T0};
_mm_prefetch(current_ptr, _MM_HINT_T0);
}
current_ptr = current_ptr.add(CACHE_LINE_SIZE);
}
}
}
impl From<pb::tensor::DataType> for DataType {
fn from(dt: pb::tensor::DataType) -> Self {
match dt {
pb::tensor::DataType::Uint8 => Self::UInt8,
pb::tensor::DataType::Uint16 => Self::UInt16,
pb::tensor::DataType::Uint32 => Self::UInt32,
pb::tensor::DataType::Uint64 => Self::UInt64,
pb::tensor::DataType::Float16 => Self::Float16,
pb::tensor::DataType::Float32 => Self::Float32,
pb::tensor::DataType::Float64 => Self::Float64,
pb::tensor::DataType::Bfloat16 => unimplemented!(),
}
}
}
impl TryFrom<&DataType> for pb::tensor::DataType {
type Error = Error;
fn try_from(dt: &DataType) -> Result<Self> {
match dt {
DataType::UInt8 => Ok(Self::Uint8),
DataType::UInt16 => Ok(Self::Uint16),
DataType::UInt32 => Ok(Self::Uint32),
DataType::UInt64 => Ok(Self::Uint64),
DataType::Float16 => Ok(Self::Float16),
DataType::Float32 => Ok(Self::Float32),
DataType::Float64 => Ok(Self::Float64),
_ => Err(Error::Index {
message: format!("pb tensor type not supported: {:?}", dt),
location: location!(),
}),
}
}
}
impl TryFrom<DataType> for pb::tensor::DataType {
type Error = Error;
fn try_from(dt: DataType) -> Result<Self> {
(&dt).try_into()
}
}
impl TryFrom<&FixedSizeListArray> for pb::Tensor {
type Error = Error;
fn try_from(array: &FixedSizeListArray) -> Result<Self> {
let mut tensor = Self::default();
tensor.data_type = pb::tensor::DataType::try_from(array.value_type())? as i32;
tensor.shape = vec![array.len() as u32, array.value_length() as u32];
let flat_array = array.values();
tensor.data = flat_array.into_data().buffers()[0].to_vec();
Ok(tensor)
}
}
impl TryFrom<&pb::Tensor> for FixedSizeListArray {
type Error = Error;
fn try_from(tensor: &Tensor) -> Result<Self> {
if tensor.shape.len() != 2 {
return Err(Error::Index {
message: format!("only accept 2-D tensor shape, got: {:?}", tensor.shape),
location: location!(),
});
}
let dim = tensor.shape[1] as usize;
let num_rows = tensor.shape[0] as usize;
let data = bytes::Bytes::from(tensor.data.clone());
let flat_array = bytes_to_array(
&DataType::from(pb::tensor::DataType::try_from(tensor.data_type).unwrap()),
data,
dim * num_rows,
0,
)?;
if flat_array.len() != dim * num_rows {
return Err(Error::Index {
message: format!(
"Tensor shape {:?} does not match to data len: {}",
tensor.shape,
flat_array.len()
),
location: location!(),
});
}
let field = Field::new("item", flat_array.data_type().clone(), true);
Ok(Self::try_new(
Arc::new(field),
dim as i32,
flat_array,
None,
)?)
}
}
#[cfg(test)]
mod tests {
use super::*;
use arrow_array::{Float16Array, Float32Array, Float64Array};
use half::f16;
use lance_arrow::FixedSizeListArrayExt;
use num_traits::identities::Zero;
#[test]
fn test_fsl_to_tensor() {
let fsl =
FixedSizeListArray::try_new_from_values(Float16Array::from(vec![f16::zero(); 20]), 5)
.unwrap();
let tensor = pb::Tensor::try_from(&fsl).unwrap();
assert_eq!(tensor.data_type, pb::tensor::DataType::Float16 as i32);
assert_eq!(tensor.shape, vec![4, 5]);
assert_eq!(tensor.data.len(), 20 * 2);
let fsl =
FixedSizeListArray::try_new_from_values(Float32Array::from(vec![0.0; 20]), 5).unwrap();
let tensor = pb::Tensor::try_from(&fsl).unwrap();
assert_eq!(tensor.data_type, pb::tensor::DataType::Float32 as i32);
assert_eq!(tensor.shape, vec![4, 5]);
assert_eq!(tensor.data.len(), 20 * 4);
let fsl =
FixedSizeListArray::try_new_from_values(Float64Array::from(vec![0.0; 20]), 5).unwrap();
let tensor = pb::Tensor::try_from(&fsl).unwrap();
assert_eq!(tensor.data_type, pb::tensor::DataType::Float64 as i32);
assert_eq!(tensor.shape, vec![4, 5]);
assert_eq!(tensor.data.len(), 20 * 8);
}
}