lance_io/
utils.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors

use std::cmp::min;

use arrow_array::{
    types::{BinaryType, LargeBinaryType, LargeUtf8Type, Utf8Type},
    ArrayRef,
};
use arrow_schema::DataType;
use byteorder::{ByteOrder, LittleEndian};
use bytes::Bytes;
use lance_arrow::*;
use prost::Message;
use snafu::{location, Location};

use crate::{
    encodings::{binary::BinaryDecoder, plain::PlainDecoder, AsyncIndex, Decoder},
    traits::ProtoStruct,
};
use crate::{traits::Reader, ReadBatchParams};
use lance_core::{Error, Result};

/// Read a binary array from a [Reader].
///
pub async fn read_binary_array(
    reader: &dyn Reader,
    data_type: &DataType,
    nullable: bool,
    position: usize,
    length: usize,
    params: impl Into<ReadBatchParams>,
) -> Result<ArrayRef> {
    use arrow_schema::DataType::*;
    let decoder: Box<dyn Decoder<Output = Result<ArrayRef>> + Send> = match data_type {
        Utf8 => Box::new(BinaryDecoder::<Utf8Type>::new(
            reader, position, length, nullable,
        )),
        Binary => Box::new(BinaryDecoder::<BinaryType>::new(
            reader, position, length, nullable,
        )),
        LargeUtf8 => Box::new(BinaryDecoder::<LargeUtf8Type>::new(
            reader, position, length, nullable,
        )),
        LargeBinary => Box::new(BinaryDecoder::<LargeBinaryType>::new(
            reader, position, length, nullable,
        )),
        _ => {
            return Err(Error::io(
                format!("Unsupported binary type: {}", data_type),
                location!(),
            ));
        }
    };
    let fut = decoder.as_ref().get(params.into());
    fut.await
}

/// Read a fixed stride array from disk.
///
pub async fn read_fixed_stride_array(
    reader: &dyn Reader,
    data_type: &DataType,
    position: usize,
    length: usize,
    params: impl Into<ReadBatchParams>,
) -> Result<ArrayRef> {
    if !data_type.is_fixed_stride() {
        return Err(Error::Schema {
            message: format!("{data_type} is not a fixed stride type"),
            location: location!(),
        });
    }
    // TODO: support more than plain encoding here.
    let decoder = PlainDecoder::new(reader, data_type, position, length)?;
    decoder.get(params.into()).await
}

/// Read a protobuf message at file position 'pos'.
///
/// We write protobuf by first writing the length of the message as a u32,
/// followed by the message itself.
pub async fn read_message<M: Message + Default>(reader: &dyn Reader, pos: usize) -> Result<M> {
    let file_size = reader.size().await?;
    if pos > file_size {
        return Err(Error::io("file size is too small".to_string(), location!()));
    }

    let range = pos..min(pos + reader.block_size(), file_size);
    let buf = reader.get_range(range.clone()).await?;
    let msg_len = LittleEndian::read_u32(&buf) as usize;

    if msg_len + 4 > buf.len() {
        let remaining_range = range.end..min(4 + pos + msg_len, file_size);
        let remaining_bytes = reader.get_range(remaining_range).await?;
        let buf = [buf, remaining_bytes].concat();
        assert!(buf.len() >= msg_len + 4);
        Ok(M::decode(&buf[4..4 + msg_len])?)
    } else {
        Ok(M::decode(&buf[4..4 + msg_len])?)
    }
}

/// Read a Protobuf-backed struct at file position: `pos`.
// TODO: pub(crate)
pub async fn read_struct<
    'm,
    M: Message + Default + 'static,
    T: ProtoStruct<Proto = M> + TryFrom<M, Error = Error>,
>(
    reader: &dyn Reader,
    pos: usize,
) -> Result<T> {
    let msg = read_message::<M>(reader, pos).await?;
    T::try_from(msg)
}

pub async fn read_last_block(reader: &dyn Reader) -> object_store::Result<Bytes> {
    let file_size = reader.size().await?;
    let block_size = reader.block_size();
    let begin = file_size.saturating_sub(block_size);
    reader.get_range(begin..file_size).await
}

pub fn read_metadata_offset(bytes: &Bytes) -> Result<usize> {
    let len = bytes.len();
    if len < 16 {
        return Err(Error::io(
            format!(
                "does not have sufficient data, len: {}, bytes: {:?}",
                len, bytes
            ),
            location!(),
        ));
    }
    let offset_bytes = bytes.slice(len - 16..len - 8);
    Ok(LittleEndian::read_u64(offset_bytes.as_ref()) as usize)
}

/// Read the version from the footer bytes
pub fn read_version(bytes: &Bytes) -> Result<(u16, u16)> {
    let len = bytes.len();
    if len < 8 {
        return Err(Error::io(
            format!(
                "does not have sufficient data, len: {}, bytes: {:?}",
                len, bytes
            ),
            location!(),
        ));
    }

    let major_version = LittleEndian::read_u16(bytes.slice(len - 8..len - 6).as_ref());
    let minor_version = LittleEndian::read_u16(bytes.slice(len - 6..len - 4).as_ref());
    Ok((major_version, minor_version))
}

/// Read protobuf from a buffer.
pub fn read_message_from_buf<M: Message + Default>(buf: &Bytes) -> Result<M> {
    let msg_len = LittleEndian::read_u32(buf) as usize;
    Ok(M::decode(&buf[4..4 + msg_len])?)
}

/// Read a Protobuf-backed struct from a buffer.
pub fn read_struct_from_buf<
    M: Message + Default,
    T: ProtoStruct<Proto = M> + TryFrom<M, Error = Error>,
>(
    buf: &Bytes,
) -> Result<T> {
    let msg: M = read_message_from_buf(buf)?;
    T::try_from(msg)
}

#[cfg(test)]
mod tests {
    use bytes::Bytes;
    use object_store::path::Path;

    use crate::{
        object_reader::CloudObjectReader,
        object_store::{ObjectStore, DEFAULT_DOWNLOAD_RETRY_COUNT},
        object_writer::ObjectWriter,
        traits::{ProtoStruct, WriteExt, Writer},
        utils::read_struct,
        Error, Result,
    };

    // Bytes is a prost::Message, since we don't have any .proto files in this crate we
    // can use it to simulate a real message object.
    #[derive(Debug, PartialEq)]
    struct BytesWrapper(Bytes);

    impl ProtoStruct for BytesWrapper {
        type Proto = Bytes;
    }

    impl From<&BytesWrapper> for Bytes {
        fn from(value: &BytesWrapper) -> Self {
            value.0.clone()
        }
    }

    impl TryFrom<Bytes> for BytesWrapper {
        type Error = Error;
        fn try_from(value: Bytes) -> Result<Self> {
            Ok(Self(value))
        }
    }

    #[tokio::test]
    async fn test_write_proto_structs() {
        let store = ObjectStore::memory();
        let path = Path::from("/foo");

        let mut object_writer = ObjectWriter::new(&store, &path).await.unwrap();
        assert_eq!(object_writer.tell().await.unwrap(), 0);

        let some_message = BytesWrapper(Bytes::from(vec![10, 20, 30]));

        let pos = object_writer.write_struct(&some_message).await.unwrap();
        assert_eq!(pos, 0);
        object_writer.shutdown().await.unwrap();

        let object_reader =
            CloudObjectReader::new(store.inner, path, 1024, None, DEFAULT_DOWNLOAD_RETRY_COUNT)
                .unwrap();
        let actual: BytesWrapper = read_struct(&object_reader, pos).await.unwrap();
        assert_eq!(some_message, actual);
    }
}