lance_linalg/distance/
l2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors

//! L2 (Euclidean) distance.
//!

use std::iter::Sum;
use std::ops::AddAssign;
use std::sync::Arc;

use arrow_array::{
    cast::AsArray,
    types::{Float16Type, Float32Type, Float64Type},
    Array, FixedSizeListArray, Float32Array,
};
use arrow_schema::DataType;
use half::{bf16, f16};
use lance_arrow::{ArrowFloatType, FloatArray};
#[cfg(feature = "fp16kernels")]
use lance_core::utils::cpu::SimdSupport;
use lance_core::utils::cpu::FP16_SIMD_SUPPORT;
use num_traits::{AsPrimitive, Num};

use crate::simd::{
    f32::{f32x16, f32x8},
    SIMD,
};
use crate::{Error, Result};

/// Calculate the L2 distance between two vectors.
///
pub trait L2: Num {
    /// Calculate the L2 distance between two vectors.
    fn l2(x: &[Self], y: &[Self]) -> f32;

    fn l2_batch<'a>(
        x: &'a [Self],
        y: &'a [Self],
        dimension: usize,
    ) -> Box<dyn Iterator<Item = f32> + 'a> {
        Box::new(y.chunks_exact(dimension).map(|v| Self::l2(x, v)))
    }
}

#[inline]
pub fn l2<T: L2>(from: &[T], to: &[T]) -> f32 {
    T::l2(from, to)
}

/// Calculate L2 distance between two uint8 slices.
#[inline]
pub fn l2_distance_uint_scalar(key: &[u8], target: &[u8]) -> f32 {
    key.iter()
        .zip(target.iter())
        .map(|(&x, &y)| (x.abs_diff(y) as u32).pow(2))
        .sum::<u32>() as f32
}

/// Calculate the L2 distance between two vectors, using scalar operations.
///
/// It relies on LLVM for auto-vectorization and unrolling.
///
/// This is pub for test/benchmark only. use [l2] instead.
#[inline]
pub fn l2_scalar<
    T: AsPrimitive<Output>,
    Output: Num + Copy + Sum + AddAssign + 'static,
    const LANES: usize,
>(
    from: &[T],
    to: &[T],
) -> Output {
    let x_chunks = from.chunks_exact(LANES);
    let y_chunks = to.chunks_exact(LANES);

    let s = if !x_chunks.remainder().is_empty() {
        x_chunks
            .remainder()
            .iter()
            .zip(y_chunks.remainder())
            .map(|(&x, &y)| {
                let diff = x.as_() - y.as_();
                diff * diff
            })
            .sum::<Output>()
    } else {
        Output::zero()
    };

    let mut sums = [Output::zero(); LANES];
    for (x, y) in x_chunks.zip(y_chunks) {
        for i in 0..LANES {
            let diff = x[i].as_() - y[i].as_();
            sums[i] += diff * diff;
        }
    }

    s + sums.iter().copied().sum()
}

impl L2 for u8 {
    #[inline]
    fn l2(x: &[Self], y: &[Self]) -> f32 {
        l2_distance_uint_scalar(x, y)
    }
}

impl L2 for bf16 {
    #[inline]
    fn l2(x: &[Self], y: &[Self]) -> f32 {
        // TODO: add SIMD support
        l2_scalar::<Self, f32, 16>(x, y)
    }
}

#[cfg(feature = "fp16kernels")]
mod kernel {
    use super::*;

    // These are the `l2_f16` function in f16.c. Our build.rs script compiles
    // a version of this file for each SIMD level with different suffixes.
    extern "C" {
        #[cfg(target_arch = "aarch64")]
        pub fn l2_f16_neon(ptr1: *const f16, ptr2: *const f16, len: u32) -> f32;
        #[cfg(all(kernel_support = "avx512", target_arch = "x86_64"))]
        pub fn l2_f16_avx512(ptr1: *const f16, ptr2: *const f16, len: u32) -> f32;
        #[cfg(target_arch = "x86_64")]
        pub fn l2_f16_avx2(ptr1: *const f16, ptr2: *const f16, len: u32) -> f32;
        #[cfg(target_arch = "loongarch64")]
        pub fn l2_f16_lsx(ptr1: *const f16, ptr2: *const f16, len: u32) -> f32;
        #[cfg(target_arch = "loongarch64")]
        pub fn l2_f16_lasx(ptr1: *const f16, ptr2: *const f16, len: u32) -> f32;
    }
}

impl L2 for f16 {
    #[inline]
    fn l2(x: &[Self], y: &[Self]) -> f32 {
        match *FP16_SIMD_SUPPORT {
            #[cfg(all(feature = "fp16kernels", target_arch = "aarch64"))]
            SimdSupport::Neon => unsafe {
                kernel::l2_f16_neon(x.as_ptr(), y.as_ptr(), x.len() as u32)
            },
            #[cfg(all(
                feature = "fp16kernels",
                kernel_support = "avx512",
                target_arch = "x86_64"
            ))]
            SimdSupport::Avx512 => unsafe {
                kernel::l2_f16_avx512(x.as_ptr(), y.as_ptr(), x.len() as u32)
            },
            #[cfg(all(feature = "fp16kernels", target_arch = "x86_64"))]
            SimdSupport::Avx2 => unsafe {
                kernel::l2_f16_avx2(x.as_ptr(), y.as_ptr(), x.len() as u32)
            },
            #[cfg(all(feature = "fp16kernels", target_arch = "loongarch64"))]
            SimdSupport::Lasx => unsafe {
                kernel::l2_f16_lasx(x.as_ptr(), y.as_ptr(), x.len() as u32)
            },
            #[cfg(all(feature = "fp16kernels", target_arch = "loongarch64"))]
            SimdSupport::Lsx => unsafe {
                kernel::l2_f16_lsx(x.as_ptr(), y.as_ptr(), x.len() as u32)
            },
            _ => l2_scalar::<Self, f32, 16>(x, y),
        }
    }
}

impl L2 for f32 {
    #[inline]
    fn l2(x: &[Self], y: &[Self]) -> f32 {
        // 16 = 512 (avx512) / 8 bits / 4 (sizeof(f32))
        // See https://github.com/lancedb/lance/pull/2450.
        l2_scalar::<Self, Self, 16>(x, y)
    }

    fn l2_batch<'a>(
        x: &'a [Self],
        y: &'a [Self],
        dimension: usize,
    ) -> Box<dyn Iterator<Item = f32> + 'a> {
        use self::f32::l2_once;
        // Dispatch based on the dimension.
        match dimension {
            8 => Box::new(
                y.chunks_exact(dimension)
                    .map(move |v| l2_once::<f32x8, 8>(x, v)),
            ),
            16 => Box::new(
                y.chunks_exact(dimension)
                    .map(move |v| l2_once::<f32x16, 16>(x, v)),
            ),
            _ => Box::new(y.chunks_exact(dimension).map(|v| Self::l2(x, v))),
        }
    }
}

impl L2 for f64 {
    #[inline]
    fn l2(x: &[Self], y: &[Self]) -> f32 {
        l2_scalar::<Self, Self, 8>(x, y) as f32
    }
}

/// Compute L2 distance between two vectors.
#[inline]
pub fn l2_distance(from: &[f32], to: &[f32]) -> f32 {
    l2(from, to)
}

// f32 kernels for L2
mod f32 {
    use super::*;

    #[inline]
    pub fn l2_once<S: SIMD<f32, N>, const N: usize>(x: &[f32], y: &[f32]) -> f32 {
        debug_assert_eq!(x.len(), N);
        debug_assert_eq!(y.len(), N);
        let x = unsafe { S::load_unaligned(x.as_ptr()) };
        let y = unsafe { S::load_unaligned(y.as_ptr()) };
        let s = x - y;
        (s * s).reduce_sum()
    }
}

/// Compute L2 distance between a vector and a batch of vectors.
///
/// Parameters
///
/// - `from`: the vector to compute distance from.
/// - `to`: a list of vectors to compute distance to.
/// - `dimension`: the dimension of the vectors.
///
/// Returns
///
/// An iterator of pair-wise distance between `from` vector to each vector in the batch.
pub fn l2_distance_batch<'a, T: L2>(
    from: &'a [T],
    to: &'a [T],
    dimension: usize,
) -> Box<dyn Iterator<Item = f32> + 'a> {
    debug_assert_eq!(from.len(), dimension);
    debug_assert_eq!(to.len() % dimension, 0);

    T::l2_batch(from, to, dimension)
}

fn do_l2_distance_arrow_batch<T: ArrowFloatType>(
    from: &T::ArrayType,
    to: &FixedSizeListArray,
) -> Result<Arc<Float32Array>>
where
    T::Native: L2,
{
    let dimension = to.value_length() as usize;
    debug_assert_eq!(from.len(), dimension);

    // TODO: if we detect there is a run of nulls, should we skip those?
    let to_values =
        to.values()
            .as_any()
            .downcast_ref::<T::ArrayType>()
            .ok_or(Error::ComputeError(format!(
                "Cannot downcast to the same type: {} != {}",
                T::FLOAT_TYPE,
                to.value_type()
            )))?;
    let dists = l2_distance_batch(from.as_slice(), to_values.as_slice(), dimension);

    Ok(Arc::new(Float32Array::new(
        dists.collect(),
        to.nulls().cloned(),
    )))
}

/// Compute L2 distance between a vector and a batch of vectors.
///
/// Null buffer of `to` is propagated to the returned array.
///
/// Parameters
///
/// - `from`: the vector to compute distance from.
/// - `to`: a list of vectors to compute distance to.
///
/// # Panics
///
/// Panics if the length of `from` is not equal to the dimension (value length) of `to`.
pub fn l2_distance_arrow_batch(
    from: &dyn Array,
    to: &FixedSizeListArray,
) -> Result<Arc<Float32Array>> {
    match *from.data_type() {
        DataType::Float16 => do_l2_distance_arrow_batch::<Float16Type>(from.as_primitive(), to),
        DataType::Float32 => do_l2_distance_arrow_batch::<Float32Type>(from.as_primitive(), to),
        DataType::Float64 => do_l2_distance_arrow_batch::<Float64Type>(from.as_primitive(), to),
        _ => Err(Error::ComputeError(format!(
            "Unsupported data type: {}",
            from.data_type()
        ))),
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use approx::assert_relative_eq;
    use num_traits::ToPrimitive;
    use proptest::prelude::*;

    use crate::test_utils::{
        arbitrary_bf16, arbitrary_f16, arbitrary_f32, arbitrary_f64, arbitrary_vector_pair,
    };

    #[test]
    fn test_euclidean_distance() {
        let mat = FixedSizeListArray::from_iter_primitive::<Float32Type, _, _>(
            vec![
                Some((0..8).map(|v| Some(v as f32)).collect::<Vec<_>>()),
                Some((1..9).map(|v| Some(v as f32)).collect::<Vec<_>>()),
                Some((2..10).map(|v| Some(v as f32)).collect::<Vec<_>>()),
                Some((3..11).map(|v| Some(v as f32)).collect::<Vec<_>>()),
            ],
            8,
        );
        let point = Float32Array::from((2..10).map(|v| Some(v as f32)).collect::<Vec<_>>());
        let distances = l2_distance_batch(
            point.values(),
            mat.values().as_primitive::<Float32Type>().values(),
            8,
        )
        .collect::<Vec<_>>();

        assert_eq!(distances, vec![32.0, 8.0, 0.0, 8.0]);
    }

    #[test]
    fn test_not_aligned() {
        let mat = (0..6)
            .chain(0..8)
            .chain(1..9)
            .chain(2..10)
            .chain(3..11)
            .map(|v| v as f32)
            .collect::<Vec<_>>();
        let point = Float32Array::from((0..10).map(|v| Some(v as f32)).collect::<Vec<_>>());
        let distances = l2_distance_batch(&point.values()[2..], &mat[6..], 8).collect::<Vec<_>>();

        assert_eq!(distances, vec![32.0, 8.0, 0.0, 8.0]);
    }

    #[test]
    fn test_odd_length_vector() {
        let mat = Float32Array::from_iter((0..5).map(|v| Some(v as f32)));
        let point = Float32Array::from((2..7).map(|v| Some(v as f32)).collect::<Vec<_>>());
        let distances = l2_distance_batch(point.values(), mat.values(), 5).collect::<Vec<_>>();

        assert_eq!(distances, vec![20.0]);
    }

    #[test]
    fn test_l2_distance_cases() {
        let values: Float32Array = vec![
            0.25335717, 0.24663818, 0.26330215, 0.14988247, 0.06042378, 0.21077952, 0.26687378,
            0.22145681, 0.18319066, 0.18688454, 0.05216244, 0.11470364, 0.10554603, 0.19964123,
            0.06387895, 0.18992095, 0.00123718, 0.13500804, 0.09516747, 0.19508345, 0.2582458,
            0.1211653, 0.21121833, 0.24809816, 0.04078768, 0.19586588, 0.16496408, 0.14766085,
            0.04898421, 0.14728612, 0.21263947, 0.16763233,
        ]
        .into();

        let q: Float32Array = vec![
            0.18549609,
            0.29954708,
            0.28318876,
            0.05424477,
            0.093134984,
            0.21580857,
            0.2951282,
            0.19866848,
            0.13868214,
            0.19819534,
            0.23271298,
            0.047727287,
            0.14394054,
            0.023316395,
            0.18589257,
            0.037315924,
            0.07037327,
            0.32609823,
            0.07344752,
            0.020155912,
            0.18485495,
            0.32763934,
            0.14296658,
            0.04498596,
            0.06254237,
            0.24348071,
            0.16009757,
            0.053892266,
            0.05918874,
            0.040363103,
            0.19913352,
            0.14545348,
        ]
        .into();

        let d = l2_distance_batch(q.values(), values.values(), 32).collect::<Vec<_>>();
        assert_relative_eq!(0.319_357_84, d[0]);
    }

    /// Reference implementation of L2 distance.
    ///
    /// Note that we skip the final square root step for performance reasons.
    fn l2_distance_reference(x: &[f64], y: &[f64]) -> f64 {
        x.iter()
            .zip(y.iter())
            .map(|(x, y)| (*x - *y).powi(2))
            .sum::<f64>()
    }

    fn do_l2_test<T: L2 + ToPrimitive>(x: &[T], y: &[T]) -> std::result::Result<(), TestCaseError> {
        let x_f64 = x.iter().map(|v| v.to_f64().unwrap()).collect::<Vec<f64>>();
        let y_f64 = y.iter().map(|v| v.to_f64().unwrap()).collect::<Vec<f64>>();

        let result = l2(x, y);
        let reference = l2_distance_reference(&x_f64, &y_f64) as f32;

        prop_assert!(approx::relative_eq!(result, reference, max_relative = 1e-6));
        Ok(())
    }

    #[test]
    fn test_l2_distance_f16_max() {
        let x = vec![f16::MAX; 4048];
        let y = vec![-f16::MAX; 4048];
        do_l2_test(&x, &y).unwrap();
    }

    // Test L2 distance over different types.
    // * L2 is valid over the entire range of f16.
    // * L2 is valid over f32 and bf16 in the range of +-1e12.
    // * L2 for f64 should match the reference implementation.
    proptest::proptest! {
        #[test]
        fn test_l2_distance_f16((x, y) in arbitrary_vector_pair(arbitrary_f16, 4..4048)) {
            do_l2_test(&x, &y)?;
        }

        #[test]
        fn test_l2_distance_bf16((x, y) in arbitrary_vector_pair(arbitrary_bf16, 4..4048)){
            do_l2_test(&x, &y)?;
        }

        #[test]
        fn test_l2_distance_f32((x, y) in arbitrary_vector_pair(arbitrary_f32, 4..4048)){
            do_l2_test(&x, &y)?;
        }

        #[test]
        fn test_l2_distance_f64((x, y) in arbitrary_vector_pair(arbitrary_f64, 4..4048)){
            do_l2_test(&x, &y)?;
        }
    }

    #[test]
    fn test_uint8_l2_edge_cases() {
        let q = vec![0_u8; 2048];
        let v = vec![0_u8; 2048];
        assert_eq!(l2_distance_uint_scalar(&q, &v), 0.0);

        let q = vec![0_u8; 2048];
        let v = vec![255_u8; 2048];
        assert_eq!(
            l2_distance_uint_scalar(&q, &v),
            (255_u32.pow(2) * 2048) as f32
        );
        assert_eq!(
            l2_distance_uint_scalar(&v, &q),
            (255_u32.pow(2) * 2048) as f32
        );
    }
}