leafwing_input_manager/input_processing/single_axis/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
//! Processors for single-axis input values

use std::hash::{Hash, Hasher};

use bevy::{math::FloatOrd, prelude::Reflect};
use serde::{Deserialize, Serialize};

pub use self::custom::*;
pub use self::range::*;

mod custom;
mod range;

/// A processor for single-axis input values,
/// accepting a `f32` input and producing a `f32` output.
#[must_use]
#[non_exhaustive]
#[derive(Debug, Clone, PartialEq, Reflect, Serialize, Deserialize)]
pub enum AxisProcessor {
    /// Converts input values into three discrete values,
    /// similar to [`f32::signum()`] but returning `0.0` for zero values.
    ///
    /// ```rust
    /// use leafwing_input_manager::prelude::*;
    ///
    /// // 1.0 for positive values
    /// assert_eq!(AxisProcessor::Digital.process(2.5), 1.0);
    /// assert_eq!(AxisProcessor::Digital.process(0.5), 1.0);
    ///
    /// // 0.0 for zero values
    /// assert_eq!(AxisProcessor::Digital.process(0.0), 0.0);
    /// assert_eq!(AxisProcessor::Digital.process(-0.0), 0.0);
    ///
    /// // -1.0 for negative values
    /// assert_eq!(AxisProcessor::Digital.process(-0.5), -1.0);
    /// assert_eq!(AxisProcessor::Digital.process(-2.5), -1.0);
    /// ```
    Digital,

    /// Flips the sign of input values, resulting in a directional reversal of control.
    ///
    /// ```rust
    /// use leafwing_input_manager::prelude::*;
    ///
    /// assert_eq!(AxisProcessor::Inverted.process(2.5), -2.5);
    /// assert_eq!(AxisProcessor::Inverted.process(-2.5), 2.5);
    /// ```
    Inverted,

    /// Scales input values using a specified multiplier to fine-tune the responsiveness of control.
    ///
    /// ```rust
    /// use leafwing_input_manager::prelude::*;
    ///
    /// // Doubled!
    /// assert_eq!(AxisProcessor::Sensitivity(2.0).process(2.0), 4.0);
    ///
    /// // Halved!
    /// assert_eq!(AxisProcessor::Sensitivity(0.5).process(2.0), 1.0);
    ///
    /// // Negated and halved!
    /// assert_eq!(AxisProcessor::Sensitivity(-0.5).process(2.0), -1.0);
    /// ```
    Sensitivity(f32),

    /// A wrapper around [`AxisBounds`] to represent value bounds.
    ValueBounds(AxisBounds),

    /// A wrapper around [`AxisExclusion`] to represent unscaled deadzone.
    Exclusion(AxisExclusion),

    /// A wrapper around [`AxisDeadZone`] to represent scaled deadzone.
    DeadZone(AxisDeadZone),

    /// A user-defined processor that implements [`CustomAxisProcessor`].
    Custom(Box<dyn CustomAxisProcessor>),
}

impl AxisProcessor {
    /// Computes the result by processing the `input_value`.
    #[must_use]
    #[inline]
    pub fn process(&self, input_value: f32) -> f32 {
        match self {
            Self::Digital => {
                if input_value == 0.0 {
                    0.0
                } else {
                    input_value.signum()
                }
            }
            Self::Inverted => -input_value,
            Self::Sensitivity(sensitivity) => sensitivity * input_value,
            Self::ValueBounds(bounds) => bounds.clamp(input_value),
            Self::Exclusion(exclusion) => exclusion.exclude(input_value),
            Self::DeadZone(deadzone) => deadzone.normalize(input_value),
            Self::Custom(processor) => processor.process(input_value),
        }
    }
}

impl Eq for AxisProcessor {}

impl Hash for AxisProcessor {
    fn hash<H: Hasher>(&self, state: &mut H) {
        std::mem::discriminant(self).hash(state);
        match self {
            Self::Digital => {}
            Self::Inverted => {}
            Self::Sensitivity(sensitivity) => FloatOrd(*sensitivity).hash(state),
            Self::ValueBounds(bounds) => bounds.hash(state),
            Self::Exclusion(exclusion) => exclusion.hash(state),
            Self::DeadZone(deadzone) => deadzone.hash(state),
            Self::Custom(processor) => processor.hash(state),
        }
    }
}

/// Provides methods for configuring and manipulating the processing pipeline for single-axis input.
pub trait WithAxisProcessingPipelineExt: Sized {
    /// Resets the processing pipeline, removing any currently applied processors.
    fn reset_processing_pipeline(self) -> Self;

    /// Replaces the current processing pipeline with the given [`AxisProcessor`]s.
    fn replace_processing_pipeline(
        self,
        processors: impl IntoIterator<Item = AxisProcessor>,
    ) -> Self;

    /// Appends the given [`AxisProcessor`] as the next processing step.
    fn with_processor(self, processor: impl Into<AxisProcessor>) -> Self;

    /// Appends an [`AxisProcessor::Digital`] processor as the next processing step,
    /// similar to [`f32::signum`] but returning `0.0` for zero values.
    #[inline]
    fn digital(self) -> Self {
        self.with_processor(AxisProcessor::Digital)
    }

    /// Appends an [`AxisProcessor::Inverted`] processor as the next processing step,
    /// flipping the sign of values on the axis.
    #[inline]
    fn inverted(self) -> Self {
        self.with_processor(AxisProcessor::Inverted)
    }

    /// Appends an [`AxisProcessor::Sensitivity`] processor as the next processing step,
    /// multiplying values on the axis with the given sensitivity factor.
    #[inline]
    fn sensitivity(self, sensitivity: f32) -> Self {
        self.with_processor(AxisProcessor::Sensitivity(sensitivity))
    }

    /// Appends an [`AxisBounds`] processor as the next processing step,
    /// restricting values within the range `[min, max]` on the axis.
    #[inline]
    fn with_bounds(self, min: f32, max: f32) -> Self {
        self.with_processor(AxisBounds::new(min, max))
    }

    /// Appends an [`AxisBounds`] processor as the next processing step,
    /// restricting values within the range `[-threshold, threshold]`.
    #[inline]
    fn with_bounds_symmetric(self, threshold: f32) -> Self {
        self.with_processor(AxisBounds::symmetric(threshold))
    }

    /// Appends an [`AxisBounds`] processor as the next processing step,
    /// restricting values to a minimum value.
    #[inline]
    fn at_least(self, min: f32) -> Self {
        self.with_processor(AxisBounds::at_least(min))
    }

    /// Appends an [`AxisBounds`] processor as the next processing step,
    /// restricting values to a maximum value.
    #[inline]
    fn at_most(self, max: f32) -> Self {
        self.with_processor(AxisBounds::at_most(max))
    }

    /// Appends an [`AxisDeadZone`] processor as the next processing step,
    /// excluding values within the dead zone range `[negative_max, positive_min]` on the axis,
    /// treating them as zeros, then normalizing non-excluded input values into the "live zone",
    /// the remaining range within the [`AxisBounds::magnitude(1.0)`](AxisBounds::default)
    /// after dead zone exclusion.
    ///
    /// # Requirements
    ///
    /// - `negative_max` <= `0.0` <= `positive_min`.
    ///
    /// # Panics
    ///
    /// Panics if the requirements aren't met.
    #[inline]
    fn with_deadzone(self, negative_max: f32, positive_min: f32) -> Self {
        self.with_processor(AxisDeadZone::new(negative_max, positive_min))
    }

    /// Appends an [`AxisDeadZone`] processor as the next processing step,
    /// excluding values within the dead zone range `[-threshold, threshold]` on the axis,
    /// treating them as zeros, then normalizing non-excluded input values into the "live zone",
    /// the remaining range within the [`AxisBounds::magnitude(1.0)`](AxisBounds::default)
    /// after dead zone exclusion.
    ///
    /// # Requirements
    ///
    /// - `threshold` >= `0.0`.
    ///
    /// # Panics
    ///
    /// Panics if the requirements aren't met.
    #[inline]
    fn with_deadzone_symmetric(self, threshold: f32) -> Self {
        self.with_processor(AxisDeadZone::symmetric(threshold))
    }

    /// Appends an [`AxisDeadZone`] processor as the next processing step,
    /// only passing positive values that greater than `positive_min`
    /// and then normalizing them into the "live zone" range `[positive_min, 1.0]`.
    ///
    /// # Requirements
    ///
    /// - `positive_min` >= `0.0`.
    ///
    /// # Panics
    ///
    /// Panics if the requirements aren't met.
    #[inline]
    fn only_positive(self, positive_min: f32) -> Self {
        self.with_processor(AxisDeadZone::only_positive(positive_min))
    }

    /// Appends an [`AxisDeadZone`] processor as the next processing step,
    /// only passing negative values that less than `negative_max`
    /// and then normalizing them into the "live zone" range `[-1.0, negative_max]`.
    ///
    /// # Requirements
    ///
    /// - `negative_max` <= `0.0`.
    ///
    /// # Panics
    ///
    /// Panics if the requirements aren't met.
    #[inline]
    fn only_negative(self, negative_max: f32) -> Self {
        self.with_processor(AxisDeadZone::only_negative(negative_max))
    }

    /// Appends an [`AxisExclusion`] processor as the next processing step,
    /// ignoring values within the dead zone range `[negative_max, positive_min]` on the axis,
    /// treating them as zeros.
    ///
    /// # Requirements
    ///
    /// - `negative_max` <= `0.0` <= `positive_min`.
    ///
    /// # Panics
    ///
    /// Panics if the requirements aren't met.
    #[inline]
    fn with_deadzone_unscaled(self, negative_max: f32, positive_min: f32) -> Self {
        self.with_processor(AxisExclusion::new(negative_max, positive_min))
    }

    /// Appends an [`AxisExclusion`] processor as the next processing step,
    /// ignoring values within the dead zone range `[-threshold, threshold]` on the axis,
    /// treating them as zeros.
    ///
    /// # Requirements
    ///
    /// - `threshold` >= `0.0`.
    ///
    /// # Panics
    ///
    /// Panics if the requirements aren't met.
    #[inline]
    fn with_deadzone_symmetric_unscaled(self, threshold: f32) -> Self {
        self.with_processor(AxisExclusion::symmetric(threshold))
    }

    /// Appends an [`AxisExclusion`] processor as the next processing step,
    /// only passing positive values that greater than `positive_min`.
    ///
    /// # Requirements
    ///
    /// - `positive_min` >= `0.0`.
    ///
    /// # Panics
    ///
    /// Panics if the requirements aren't met.
    #[inline]
    fn only_positive_unscaled(self, positive_min: f32) -> Self {
        self.with_processor(AxisExclusion::only_positive(positive_min))
    }

    /// Appends an [`AxisExclusion`] processor as the next processing step,
    /// only passing negative values that less than `negative_max`.
    ///
    /// # Requirements
    ///
    /// - `negative_max` <= `0.0`.
    ///
    /// # Panics
    ///
    /// Panics if the requirements aren't met.
    #[inline]
    fn only_negative_unscaled(self, negative_max: f32) -> Self {
        self.with_processor(AxisExclusion::only_negative(negative_max))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_axis_inversion_processor() {
        for value in -300..300 {
            let value = value as f32 * 0.01;

            assert_eq!(AxisProcessor::Inverted.process(value), -value);
            assert_eq!(AxisProcessor::Inverted.process(-value), value);
        }
    }

    #[test]
    fn test_axis_sensitivity_processor() {
        for value in -300..300 {
            let value = value as f32 * 0.01;

            for sensitivity in -300..300 {
                let sensitivity = sensitivity as f32 * 0.01;

                let processor = AxisProcessor::Sensitivity(sensitivity);
                assert_eq!(processor.process(value), sensitivity * value);
            }
        }
    }
}