leafwing_input_manager/input_processing/single_axis/range.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
//! Range processors for single-axis inputs
use std::hash::{Hash, Hasher};
use bevy::{math::FloatOrd, prelude::Reflect};
use serde::{Deserialize, Serialize};
use super::AxisProcessor;
/// Specifies an acceptable min-max range for valid single-axis inputs,
/// restricting all value stays within intended limits
/// to avoid unexpected behavior caused by extreme inputs.
///
/// ```rust
/// use leafwing_input_manager::prelude::*;
///
/// // Restrict values to [-2.0, 1.5].
/// let bounds = AxisBounds::new(-2.0, 1.5);
///
/// // The ways to create an AxisProcessor.
/// let processor = AxisProcessor::from(bounds);
/// assert_eq!(processor, AxisProcessor::ValueBounds(bounds));
///
/// for value in -300..300 {
/// let value = value as f32 * 0.01;
/// assert_eq!(bounds.clamp(value), value.clamp(-2.0, 1.5));
/// }
/// ```
#[derive(Debug, Clone, Copy, PartialEq, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct AxisBounds {
/// The minimum value of valid inputs.
pub(crate) min: f32,
/// The maximum value of valid inputs.
pub(crate) max: f32,
}
impl AxisBounds {
/// Unlimited [`AxisBounds`].
pub const FULL_RANGE: Self = Self {
min: f32::MIN,
max: f32::MAX,
};
/// Creates an [`AxisBounds`] that restricts values to the given range `[min, max]`.
///
/// # Requirements
///
/// - `min` <= `max`.
///
/// # Panics
///
/// Panics if the requirements aren't met.
#[inline]
pub fn new(min: f32, max: f32) -> Self {
// PartialOrd for f32 ensures that NaN values are checked during comparisons.
assert!(min <= max);
Self { min, max }
}
/// Creates an [`AxisBounds`] that restricts values within the range `[-threshold, threshold]`.
///
/// # Requirements
///
/// - `threshold` >= `0.0`.
///
/// # Panics
///
/// Panics if the requirements aren't met.
#[doc(alias = "magnitude")]
#[inline]
pub fn symmetric(threshold: f32) -> Self {
Self::new(-threshold, threshold)
}
/// Creates an [`AxisBounds`] that restricts values to a minimum value.
#[inline]
pub const fn at_least(min: f32) -> Self {
Self {
min,
..Self::FULL_RANGE
}
}
/// Creates an [`AxisBounds`] that restricts values to a maximum value.
#[inline]
pub const fn at_most(max: f32) -> Self {
Self {
max,
..Self::FULL_RANGE
}
}
/// Returns the minimum and maximum bounds.
#[must_use]
#[inline]
pub fn min_max(&self) -> (f32, f32) {
(self.min(), self.max())
}
/// Returns the minimum bound.
#[must_use]
#[inline]
pub fn min(&self) -> f32 {
self.min
}
/// Returns the maximum bound.
#[must_use]
#[inline]
pub fn max(&self) -> f32 {
self.max
}
/// Is the given `input_value` within the bounds?
#[must_use]
#[inline]
pub fn contains(&self, input_value: f32) -> bool {
self.min <= input_value && input_value <= self.max
}
/// Clamps `input_value` within the bounds.
#[must_use]
#[inline]
pub fn clamp(&self, input_value: f32) -> f32 {
// clamp() includes checks if either bound is set to NaN,
// but the constructors guarantee that all bounds will not be NaN.
input_value.min(self.max).max(self.min)
}
}
impl Default for AxisBounds {
/// Creates an [`AxisBounds`] that restricts values to the range `[-1.0, 1.0]`.
#[inline]
fn default() -> Self {
Self {
min: -1.0,
max: 1.0,
}
}
}
impl From<AxisBounds> for AxisProcessor {
fn from(value: AxisBounds) -> Self {
Self::ValueBounds(value)
}
}
impl Eq for AxisBounds {}
impl Hash for AxisBounds {
fn hash<H: Hasher>(&self, state: &mut H) {
FloatOrd(self.min).hash(state);
FloatOrd(self.max).hash(state);
}
}
/// Specifies an exclusion range for excluding single-axis inputs,
/// helping filter out minor fluctuations and unintended movements.
///
/// In simple terms, this processor behaves like an [`AxisDeadZone`] without normalization.
///
/// # Examples
///
/// ```rust
/// use leafwing_input_manager::prelude::*;
///
/// // Exclude values between -0.2 and 0.3
/// let exclusion = AxisExclusion::new(-0.2, 0.3);
///
/// // The ways to create an AxisProcessor.
/// let processor = AxisProcessor::from(exclusion);
/// assert_eq!(processor, AxisProcessor::Exclusion(exclusion));
///
/// for value in -300..300 {
/// let value = value as f32 * 0.01;
///
/// if -0.2 <= value && value <= 0.3 {
/// assert!(exclusion.contains(value));
/// assert_eq!(exclusion.exclude(value), 0.0);
/// } else {
/// assert!(!exclusion.contains(value));
/// assert_eq!(exclusion.exclude(value), value);
/// }
/// }
/// ```
#[derive(Debug, Clone, Copy, PartialEq, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct AxisExclusion {
/// The maximum negative value treated as zero.
pub(crate) negative_max: f32,
/// The minimum positive value treated as zero.
pub(crate) positive_min: f32,
}
impl AxisExclusion {
/// Zero-size [`AxisExclusion`], leaving values as is.
pub const ZERO: Self = Self {
negative_max: 0.0,
positive_min: 0.0,
};
/// Creates an [`AxisExclusion`] that ignores values within the range `[negative_max, positive_min]`.
///
/// # Requirements
///
/// - `negative_max` <= `0.0` <= `positive_min`.
///
/// # Panics
///
/// Panics if the requirements aren't met.
#[inline]
pub fn new(negative_max: f32, positive_min: f32) -> Self {
assert!(negative_max <= 0.0);
assert!(positive_min >= 0.0);
Self {
negative_max,
positive_min,
}
}
/// Creates an [`AxisExclusion`] that ignores values within the range `[-threshold, threshold]`.
///
/// # Requirements
///
/// - `threshold` >= `0.0`.
///
/// # Panics
///
/// Panics if the requirements aren't met.
#[doc(alias = "magnitude")]
#[inline]
pub fn symmetric(threshold: f32) -> Self {
Self::new(-threshold, threshold)
}
/// Creates an [`AxisExclusion`] that only passes positive values that greater than `positive_min`.
///
/// # Requirements
///
/// - `positive_min` >= `0.0`.
///
/// # Panics
///
/// Panics if the requirements aren't met.
#[inline]
pub fn only_positive(positive_min: f32) -> Self {
Self::new(f32::NEG_INFINITY, positive_min)
}
/// Creates an [`AxisExclusion`] that only passes negative values that less than `negative_max`.
///
/// # Requirements
///
/// - `negative_max` <= `0.0`.
///
/// # Panics
///
/// Panics if the requirements aren't met.
#[inline]
pub fn only_negative(negative_max: f32) -> Self {
Self::new(negative_max, f32::INFINITY)
}
/// Returns the minimum and maximum bounds.
#[must_use]
#[inline]
pub fn min_max(&self) -> (f32, f32) {
(self.negative_max, self.positive_min)
}
/// Returns the minimum bound.
#[must_use]
#[inline]
pub fn min(&self) -> f32 {
self.negative_max
}
/// Returns the maximum bounds.
#[must_use]
#[inline]
pub fn max(&self) -> f32 {
self.positive_min
}
/// Is `input_value` within the deadzone?
#[must_use]
#[inline]
pub fn contains(&self, input_value: f32) -> bool {
self.negative_max <= input_value && input_value <= self.positive_min
}
/// Excludes values within the specified range.
#[must_use]
#[inline]
pub fn exclude(&self, input_value: f32) -> f32 {
if self.contains(input_value) {
0.0
} else {
input_value
}
}
/// Creates an [`AxisDeadZone`] using `self` as the exclusion range.
#[inline]
pub fn scaled(self) -> AxisDeadZone {
AxisDeadZone::new(self.negative_max, self.positive_min)
}
}
impl Default for AxisExclusion {
/// Creates an [`AxisExclusion`] that ignores values within the range `[-0.1, 0.1]`.
#[inline]
fn default() -> Self {
Self {
negative_max: -0.1,
positive_min: 0.1,
}
}
}
impl From<AxisExclusion> for AxisProcessor {
fn from(value: AxisExclusion) -> Self {
Self::Exclusion(value)
}
}
impl Eq for AxisExclusion {}
impl Hash for AxisExclusion {
fn hash<H: Hasher>(&self, state: &mut H) {
FloatOrd(self.negative_max).hash(state);
FloatOrd(self.positive_min).hash(state);
}
}
/// A scaled version of [`AxisExclusion`] with the bounds
/// set to [`AxisBounds::magnitude(1.0)`](AxisBounds::default)
/// that normalizes non-excluded input values into the "live zone",
/// the remaining range within the bounds after dead zone exclusion.
///
/// # Examples
///
/// ```rust
/// use bevy::prelude::*;
/// use leafwing_input_manager::prelude::*;
///
/// // Exclude values between -0.2 and 0.3
/// let deadzone = AxisDeadZone::new(-0.2, 0.3);
///
/// // Another way to create an AxisDeadzone.
/// let exclusion = AxisExclusion::new(-0.2, 0.3);
/// assert_eq!(exclusion.scaled(), deadzone);
///
/// // The ways to create an AxisProcessor.
/// let processor = AxisProcessor::from(deadzone);
/// assert_eq!(processor, AxisProcessor::DeadZone(deadzone));
///
/// // The bounds after normalization.
/// let bounds = deadzone.bounds();
/// assert_eq!(bounds.min(), -1.0);
/// assert_eq!(bounds.max(), 1.0);
///
/// for value in -300..300 {
/// let value = value as f32 * 0.01;
///
/// // Values within the dead zone are treated as zero.
/// if -0.2 <= value && value <= 0.3 {
/// assert!(deadzone.within_exclusion(value));
/// assert_eq!(deadzone.normalize(value), 0.0);
/// }
///
/// // Values within the live zone are scaled linearly.
/// else if -1.0 <= value && value < -0.2 {
/// assert!(deadzone.within_livezone_lower(value));
///
/// let expected = f32::inverse_lerp(-1.0, -0.2, value) - 1.0;
/// assert!((deadzone.normalize(value) - expected).abs() <= f32::EPSILON);
/// } else if 0.3 < value && value <= 1.0 {
/// assert!(deadzone.within_livezone_upper(value));
///
/// let expected = f32::inverse_lerp(0.3, 1.0, value);
/// assert!((deadzone.normalize(value) - expected).abs() <= f32::EPSILON);
/// }
///
/// // Values outside the bounds are restricted to the range.
/// else {
/// assert!(!deadzone.within_bounds(value));
/// assert_eq!(deadzone.normalize(value), value.clamp(-1.0, 1.0));
/// }
/// }
/// ```
#[derive(Debug, Clone, Copy, PartialEq, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct AxisDeadZone {
/// The [`AxisExclusion`] used for normalization.
pub(crate) exclusion: AxisExclusion,
/// Pre-calculated reciprocal of the lower live zone size,
/// preventing division during normalization.
pub(crate) livezone_lower_recip: f32,
/// Pre-calculated reciprocal of the upper live zone size,
/// preventing division during normalization.
pub(crate) livezone_upper_recip: f32,
}
impl AxisDeadZone {
/// Zero-size [`AxisDeadZone`], only restricting values to the range `[-1.0, 1.0]`.
pub const ZERO: Self = Self {
exclusion: AxisExclusion::ZERO,
livezone_lower_recip: 1.0,
livezone_upper_recip: 1.0,
};
/// Creates an [`AxisDeadZone`] that excludes input values within the range `[negative_max, positive_min]`
/// and then normalizes non-excluded input values into the valid range `[-1.0, 1.0]`.
///
/// # Requirements
///
/// - `negative_max` <= `0.0` <= `positive_min`.
///
/// # Panics
///
/// Panics if the requirements aren't met.
#[inline]
pub fn new(negative_max: f32, positive_min: f32) -> Self {
let (bound_min, bound_max) = AxisBounds::default().min_max();
Self {
exclusion: AxisExclusion::new(negative_max, positive_min),
livezone_lower_recip: (negative_max - bound_min).recip(),
livezone_upper_recip: (bound_max - positive_min).recip(),
}
}
/// Creates an [`AxisDeadZone`] that excludes input values within the range `[-threshold, threshold]`
/// and then normalizes non-excluded input values into the valid range `[-1.0, 1.0]`.
///
/// # Requirements
///
/// - `threshold` >= `0.0`.
///
/// # Panics
///
/// Panics if the requirements aren't met.
#[doc(alias = "magnitude")]
#[inline]
pub fn symmetric(threshold: f32) -> Self {
Self::new(-threshold, threshold)
}
/// Creates an [`AxisDeadZone`] that only passes positive values that greater than `positive_min`
/// and then normalizes them into the valid range `[-1.0, 1.0]`.
///
/// # Requirements
///
/// - `positive_min` >= `0.0`.
///
/// # Panics
///
/// Panics if the requirements aren't met.
#[inline]
pub fn only_positive(positive_min: f32) -> Self {
Self::new(f32::NEG_INFINITY, positive_min)
}
/// Creates an [`AxisDeadZone`] that only passes negative values that less than `negative_max`
/// and then normalizes them into the valid range `[-1.0, 1.0]`.
///
/// # Requirements
///
/// - `negative_max` <= `0.0`.
///
/// # Panics
///
/// Panics if the requirements aren't met.
#[inline]
pub fn only_negative(negative_max: f32) -> Self {
Self::new(negative_max, f32::INFINITY)
}
/// Returns the [`AxisExclusion`] used by this deadzone.
#[inline]
pub fn exclusion(&self) -> AxisExclusion {
self.exclusion
}
/// Returns the [`AxisBounds`] used by this deadzone.
#[inline]
pub fn bounds(&self) -> AxisBounds {
AxisBounds::default()
}
/// Returns the minimum and maximum bounds of the lower live zone used for normalization.
///
/// In simple terms, this returns `(bounds.min, exclusion.min)`.
#[must_use]
#[inline]
pub fn livezone_lower_min_max(&self) -> (f32, f32) {
(self.bounds().min(), self.exclusion.min())
}
/// Returns the minimum and maximum bounds of the upper live zone used for normalization.
///
/// In simple terms, this returns `(exclusion.max, bounds.max)`.
#[must_use]
#[inline]
pub fn livezone_upper_min_max(&self) -> (f32, f32) {
(self.exclusion.max(), self.bounds().max())
}
/// Is the given `input_value` within the exclusion range?
#[must_use]
#[inline]
pub fn within_exclusion(&self, input_value: f32) -> bool {
self.exclusion.contains(input_value)
}
/// Is the given `input_value` within the bounds?
#[must_use]
#[inline]
pub fn within_bounds(&self, input_value: f32) -> bool {
self.bounds().contains(input_value)
}
/// Is the given `input_value` within the lower live zone?
#[must_use]
#[inline]
pub fn within_livezone_lower(&self, input_value: f32) -> bool {
let (min, max) = self.livezone_lower_min_max();
min <= input_value && input_value <= max
}
/// Is the given `input_value` within the upper live zone?
#[must_use]
#[inline]
pub fn within_livezone_upper(&self, input_value: f32) -> bool {
let (min, max) = self.livezone_upper_min_max();
min <= input_value && input_value <= max
}
/// Normalizes input values into the live zone.
#[must_use]
pub fn normalize(&self, input_value: f32) -> f32 {
// Clamp out-of-bounds values to [-1, 1],
// and then exclude values within the dead zone,
// and finally linearly scale the result to the live zone.
if input_value <= 0.0 {
let (bound, deadzone) = self.livezone_lower_min_max();
let clamped_input = input_value.max(bound);
let distance_to_deadzone = (clamped_input - deadzone).min(0.0);
distance_to_deadzone * self.livezone_lower_recip
} else {
let (deadzone, bound) = self.livezone_upper_min_max();
let clamped_input = input_value.min(bound);
let distance_to_deadzone = (clamped_input - deadzone).max(0.0);
distance_to_deadzone * self.livezone_upper_recip
}
}
}
impl Default for AxisDeadZone {
/// Creates an [`AxisDeadZone`] that excludes input values within the deadzone `[-0.1, 0.1]`.
#[inline]
fn default() -> Self {
AxisDeadZone::new(-0.1, 0.1)
}
}
impl From<AxisDeadZone> for AxisProcessor {
fn from(value: AxisDeadZone) -> Self {
Self::DeadZone(value)
}
}
impl Eq for AxisDeadZone {}
impl Hash for AxisDeadZone {
fn hash<H: Hasher>(&self, state: &mut H) {
self.exclusion.hash(state);
}
}
#[cfg(test)]
mod tests {
use super::*;
use bevy::prelude::FloatExt;
#[test]
fn test_axis_value_bounds() {
fn test_bounds(bounds: AxisBounds, min: f32, max: f32) {
assert_eq!(bounds.min(), min);
assert_eq!(bounds.max(), max);
assert_eq!(bounds.min_max(), (min, max));
let processor = AxisProcessor::ValueBounds(bounds);
assert_eq!(AxisProcessor::from(bounds), processor);
for value in -300..300 {
let value = value as f32 * 0.01;
assert_eq!(bounds.clamp(value), processor.process(value));
if min <= value && value <= max {
assert!(bounds.contains(value));
} else {
assert!(!bounds.contains(value));
}
assert_eq!(bounds.clamp(value), value.clamp(min, max));
}
}
let bounds = AxisBounds::FULL_RANGE;
test_bounds(bounds, f32::MIN, f32::MAX);
let bounds = AxisBounds::default();
test_bounds(bounds, -1.0, 1.0);
let bounds = AxisBounds::new(-2.0, 2.5);
test_bounds(bounds, -2.0, 2.5);
let bounds = AxisBounds::symmetric(2.0);
test_bounds(bounds, -2.0, 2.0);
let bounds = AxisBounds::at_least(-1.0);
test_bounds(bounds, -1.0, f32::MAX);
let bounds = AxisBounds::at_most(1.5);
test_bounds(bounds, f32::MIN, 1.5);
}
#[test]
fn test_axis_exclusion() {
fn test_exclusion(exclusion: AxisExclusion, min: f32, max: f32) {
assert_eq!(exclusion.min(), min);
assert_eq!(exclusion.max(), max);
assert_eq!(exclusion.min_max(), (min, max));
let processor = AxisProcessor::Exclusion(exclusion);
assert_eq!(AxisProcessor::from(exclusion), processor);
for value in -300..300 {
let value = value as f32 * 0.01;
assert_eq!(exclusion.exclude(value), processor.process(value));
if min <= value && value <= max {
assert!(exclusion.contains(value));
assert_eq!(exclusion.exclude(value), 0.0);
} else {
assert!(!exclusion.contains(value));
assert_eq!(exclusion.exclude(value), value);
}
}
}
let exclusion = AxisExclusion::ZERO;
test_exclusion(exclusion, 0.0, 0.0);
let exclusion = AxisExclusion::default();
test_exclusion(exclusion, -0.1, 0.1);
let exclusion = AxisExclusion::new(-2.0, 2.5);
test_exclusion(exclusion, -2.0, 2.5);
let exclusion = AxisExclusion::symmetric(1.5);
test_exclusion(exclusion, -1.5, 1.5);
}
#[test]
fn test_axis_deadzone() {
fn test_deadzone(deadzone: AxisDeadZone, min: f32, max: f32) {
let exclusion = deadzone.exclusion();
assert_eq!(exclusion.min_max(), (min, max));
assert_eq!(deadzone.livezone_lower_min_max(), (-1.0, min));
let width_recip = (min + 1.0).recip();
assert!((deadzone.livezone_lower_recip - width_recip).abs() <= f32::EPSILON);
assert_eq!(deadzone.livezone_upper_min_max(), (max, 1.0));
let width_recip = (1.0 - max).recip();
assert!((deadzone.livezone_upper_recip - width_recip).abs() <= f32::EPSILON);
assert_eq!(AxisExclusion::new(min, max).scaled(), deadzone);
let processor = AxisProcessor::DeadZone(deadzone);
assert_eq!(AxisProcessor::from(deadzone), processor);
for value in -300..300 {
let value = value as f32 * 0.01;
assert_eq!(deadzone.normalize(value), processor.process(value));
// Values within the dead zone are treated as zero.
if min <= value && value <= max {
assert!(deadzone.within_exclusion(value));
assert_eq!(deadzone.normalize(value), 0.0);
}
// Values within the live zone are scaled linearly.
else if -1.0 <= value && value < min {
assert!(deadzone.within_livezone_lower(value));
let expected = f32::inverse_lerp(-1.0, min, value) - 1.0;
let delta = (deadzone.normalize(value) - expected).abs();
assert!(delta <= f32::EPSILON);
} else if max < value && value <= 1.0 {
assert!(deadzone.within_livezone_upper(value));
let expected = f32::inverse_lerp(max, 1.0, value);
let delta = (deadzone.normalize(value) - expected).abs();
assert!(delta <= f32::EPSILON);
}
// Values outside the bounds are restricted to the nearest valid value.
else {
assert!(!deadzone.within_bounds(value));
assert_eq!(deadzone.normalize(value), value.clamp(-1.0, 1.0));
}
}
}
let deadzone = AxisDeadZone::ZERO;
test_deadzone(deadzone, 0.0, 0.0);
let deadzone = AxisDeadZone::default();
test_deadzone(deadzone, -0.1, 0.1);
let deadzone = AxisDeadZone::new(-0.2, 0.3);
test_deadzone(deadzone, -0.2, 0.3);
let deadzone = AxisDeadZone::symmetric(0.4);
test_deadzone(deadzone, -0.4, 0.4);
}
}