1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
#![cfg_attr(feature = "nightly", feature(proc_macro_span))]
#![forbid(unsafe_code)]
// to prevent warnings from popping up when a nightly feature is stabilized
#![allow(stable_features)]
// FIXME? every use of quote! {} is warning here -- false positive?
#![allow(unknown_lints)]
#![allow(private_macro_use)]

#[macro_use]
extern crate proc_macro_error2;

use component::DummyModel;
use proc_macro::TokenStream;
use proc_macro2::{Span, TokenTree};
use quote::{quote, ToTokens};
use rstml::{node::KeyedAttribute, parse};
use syn::{parse_macro_input, spanned::Spanned, token::Pub, Visibility};

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(crate) enum Mode {
    Client,
    Ssr,
}

impl Default for Mode {
    fn default() -> Self {
        if cfg!(feature = "hydrate") || cfg!(feature = "csr") {
            Mode::Client
        } else {
            Mode::Ssr
        }
    }
}

mod params;
mod view;
use crate::component::unmodified_fn_name_from_fn_name;
use view::{client_template::render_template, render_view};
mod component;
mod slice;
mod slot;

/// The `view` macro uses RSX (like JSX, but Rust!) It follows most of the
/// same rules as HTML, with the following differences:
///
/// 1. Text content should be provided as a Rust string, i.e., double-quoted:
/// ```rust
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// view! { <p>"Here’s some text"</p> };
/// # }
/// # runtime.dispose();
/// ```
///
/// 2. Self-closing tags need an explicit `/` as in XML/XHTML
/// ```rust,compile_fail
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// // ❌ not like this
/// view! { <input type="text" name="name"> }
/// # ;
/// # }
/// # runtime.dispose();
/// ```
/// ```rust
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// // ✅ add that slash
/// view! { <input type="text" name="name" /> }
/// # ;
/// # }
/// # runtime.dispose();
/// ```
///
/// 3. Components (functions annotated with `#[component]`) can be inserted as camel-cased tags. (Generics
///    on components are specified as `<Component<T>/>`, not the turbofish `<Component::<T>/>`.)
/// ```rust
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # #[component]
/// # fn Counter(initial_value: i32) -> impl IntoView { view! { <p></p>} }
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// view! { <div><Counter initial_value=3 /></div> }
/// # ;
/// # }
/// # runtime.dispose();
/// ```
///
/// 4. Dynamic content can be wrapped in curly braces (`{ }`) to insert text nodes, elements, or set attributes.
///    If you insert a signal here, Leptos will create an effect to update the DOM whenever the value changes.
///    *(“Signal” here means `Fn() -> T` where `T` is the appropriate type for that node: a `String` in case
///    of text nodes, a `bool` for `class:` attributes, etc.)*
///
///    Attributes can take a wide variety of primitive types that can be converted to strings. They can also
///    take an `Option`, in which case `Some` sets the attribute and `None` removes the attribute.
///
/// ```rust,ignore
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// let (count, set_count) = create_signal(0);
///
/// view! {
///   // ❌ not like this: `count.get()` returns an `i32`, not a function
///   <p>{count.get()}</p>
///   // ✅ this is good: Leptos sees the function and knows it's a dynamic value
///   <p>{move || count.get()}</p>
///   // 🔥 with the `nightly` feature, `count` is a function, so `count` itself can be passed directly into the view
///   <p>{count}</p>
/// }
/// # ;
/// # };
/// # runtime.dispose();
/// ```
///
/// 5. Event handlers can be added with `on:` attributes. In most cases, the events are given the correct type
///    based on the event name.
/// ```rust
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// view! {
///   <button on:click=|ev| {
///     log::debug!("click event: {ev:#?}");
///   }>
///     "Click me"
///   </button>
/// }
/// # ;
/// # };
/// # runtime.dispose();
/// ```
///
/// 6. DOM properties can be set with `prop:` attributes, which take any primitive type or `JsValue` (or a signal
///    that returns a primitive or JsValue). They can also take an `Option`, in which case `Some` sets the property
///    and `None` deletes the property.
/// ```rust
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// let (name, set_name) = create_signal("Alice".to_string());
///
/// view! {
///   <input
///     type="text"
///     name="user_name"
///     value={move || name.get()} // this only sets the default value!
///     prop:value={move || name.get()} // here's how you update values. Sorry, I didn’t invent the DOM.
///     on:click=move |ev| set_name.set(event_target_value(&ev)) // `event_target_value` is a useful little Leptos helper
///   />
/// }
/// # ;
/// # };
/// # runtime.dispose();
/// ```
///
/// 7. Classes can be toggled with `class:` attributes, which take a `bool` (or a signal that returns a `bool`).
/// ```rust
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// let (count, set_count) = create_signal(2);
/// view! { <div class:hidden-div={move || count.get() < 3}>"Now you see me, now you don’t."</div> }
/// # ;
/// # }
/// # runtime.dispose();
/// ```
///
/// Class names can include dashes, and since v0.5.0 can include a dash-separated segment of only numbers.
/// ```rust
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// let (count, set_count) = create_signal(2);
/// view! { <div class:hidden-div-25={move || count.get() < 3}>"Now you see me, now you don’t."</div> }
/// # ;
/// # };
/// # runtime.dispose();
/// ```
///
/// Class names cannot include special symbols.
/// ```rust,compile_fail
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// let (count, set_count) = create_signal(2);
/// // class:hidden-[div]-25 is invalid attribute name
/// view! { <div class:hidden-[div]-25={move || count.get() < 3}>"Now you see me, now you don’t."</div> }
/// # ;
/// # };
/// # runtime.dispose();
/// ```
///
/// However, you can pass arbitrary class names using the syntax `class=("name", value)`.
/// ```rust
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// let (count, set_count) = create_signal(2);
/// // this allows you to use CSS frameworks that include complex class names
/// view! {
///   <div
///     class=("is-[this_-_really]-necessary-42", move || count.get() < 3)
///   >
///     "Now you see me, now you don’t."
///   </div>
/// }
/// # ;
/// # };
/// # runtime.dispose();
/// ```
///
/// 8. Individual styles can also be set with `style:` or `style=("property-name", value)` syntax.
/// ```rust
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// let (x, set_x) = create_signal(0);
/// let (y, set_y) = create_signal(0);
/// view! {
///   <div
///     style="position: absolute"
///     style:left=move || format!("{}px", x.get())
///     style:top=move || format!("{}px", y.get())
///     style=("background-color", move || format!("rgb({}, {}, 100)", x.get(), y.get()))
///   >
///     "Moves when coordinates change"
///   </div>
/// }
/// # ;
/// # };
/// # runtime.dispose();
/// ```
///
/// 9. You can use the `node_ref` or `_ref` attribute to store a reference to its DOM element in a
///    [NodeRef](https://docs.rs/leptos/latest/leptos/struct.NodeRef.html) to use later.
/// ```rust
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// use leptos::html::Input;
///
/// let (value, set_value) = create_signal(0);
/// let my_input = create_node_ref::<Input>();
/// view! { <input type="text" _ref=my_input/> }
/// // `my_input` now contains an `Element` that we can use anywhere
/// # ;
/// # };
/// # runtime.dispose();
/// ```
///
/// 10. You can add the same class to every element in the view by passing in a special
///    `class = {/* ... */},` argument after ``. This is useful for injecting a class
///    provided by a scoped styling library.
/// ```rust
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// let class = "mycustomclass";
/// view! { class = class,
///   <div> // will have class="mycustomclass"
///     <p>"Some text"</p> // will also have class "mycustomclass"
///   </div>
/// }
/// # ;
/// # };
/// # runtime.dispose();
/// ```
///
/// 11. You can set any HTML element’s `innerHTML` with the `inner_html` attribute on an
///     element. Be careful: this HTML will not be escaped, so you should ensure that it
///     only contains trusted input.
/// ```rust
/// # use leptos::*;
/// # let runtime = create_runtime();
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// let html = "<p>This HTML will be injected.</p>";
/// view! {
///   <div inner_html=html/>
/// }
/// # ;
/// # };
/// # runtime.dispose();
/// ```
///
/// Here’s a simple example that shows off several of these features, put together
/// ```rust
/// # use leptos::*;
///
/// # if !cfg!(any(feature = "csr", feature = "hydrate")) {
/// pub fn SimpleCounter() -> impl IntoView {
///     // create a reactive signal with the initial value
///     let (value, set_value) = create_signal(0);
///
///     // create event handlers for our buttons
///     // note that `value` and `set_value` are `Copy`, so it's super easy to move them into closures
///     let clear = move |_ev| set_value.set(0);
///     let decrement = move |_ev| set_value.update(|value| *value -= 1);
///     let increment = move |_ev| set_value.update(|value| *value += 1);
///
///     view! {
///         <div>
///             <button on:click=clear>"Clear"</button>
///             <button on:click=decrement>"-1"</button>
///             <span>"Value: " {move || value.get().to_string()} "!"</span>
///             <button on:click=increment>"+1"</button>
///         </div>
///     }
/// }
/// # ;
/// # }
/// ```
#[proc_macro_error2::proc_macro_error]
#[proc_macro]
#[cfg_attr(
    any(debug_assertions, feature = "ssr"),
    tracing::instrument(level = "trace", skip_all,)
)]
pub fn view(tokens: TokenStream) -> TokenStream {
    let tokens: proc_macro2::TokenStream = tokens.into();
    let mut tokens = tokens.into_iter();

    let first = tokens.next();
    let second = tokens.next();
    let third = tokens.next();
    let fourth = tokens.next();
    let global_class = match (&first, &second) {
        (Some(TokenTree::Ident(first)), Some(TokenTree::Punct(eq)))
            if *first == "class" && eq.as_char() == '=' =>
        {
            match &fourth {
                Some(TokenTree::Punct(comma)) if comma.as_char() == ',' => {
                    third.clone()
                }
                _ => {
                    abort!(
                        second, "To create a scope class with the view! macro you must put a comma `,` after the value";
                        help = r#"e.g., view!{ class="my-class", <div>...</div>}"#
                    )
                }
            }
        }
        _ => None,
    };
    let tokens = if global_class.is_some() {
        tokens.collect::<proc_macro2::TokenStream>()
    } else {
        [first, second, third, fourth]
            .into_iter()
            .flatten()
            .chain(tokens)
            .collect()
    };
    let config = rstml::ParserConfig::default().recover_block(true);
    let parser = rstml::Parser::new(config);
    let (nodes, errors) = parser.parse_recoverable(tokens).split_vec();
    let errors = errors.into_iter().map(|e| e.emit_as_expr_tokens());
    let nodes_output = render_view(
        &nodes,
        Mode::default(),
        global_class.as_ref(),
        normalized_call_site(proc_macro::Span::call_site()),
    );
    quote! {
        {
            #(#errors;)*
            #nodes_output
        }
    }
    .into()
}

fn normalized_call_site(site: proc_macro::Span) -> Option<String> {
    cfg_if::cfg_if! {
        if #[cfg(all(debug_assertions, feature = "nightly"))] {
            Some(leptos_hot_reload::span_to_stable_id(
                site.source_file().path(),
                site.start().line()
            ))
        } else {
            _ = site;
            None
        }
    }
}

/// An optimized, cached template for client-side rendering. Follows the same
/// syntax as the [view!] macro. In hydration or server-side rendering mode,
/// behaves exactly as the `view` macro. In client-side rendering mode, uses a `<template>`
/// node to efficiently render the element. Should only be used with a single root element.
#[proc_macro_error2::proc_macro_error]
#[proc_macro]
pub fn template(tokens: TokenStream) -> TokenStream {
    if cfg!(feature = "csr") {
        match parse(tokens) {
            Ok(nodes) => render_template(&nodes),
            Err(error) => error.to_compile_error(),
        }
        .into()
    } else {
        view(tokens)
    }
}

/// Annotates a function so that it can be used with your template as a Leptos `<Component/>`.
///
/// The `#[component]` macro allows you to annotate plain Rust functions as components
/// and use them within your Leptos [view](crate::view!) as if they were custom HTML elements. The
/// component function takes any number of other arguments. When you use the component somewhere else,
/// the names of its arguments are the names of the properties you use in the [view](crate::view!) macro.
///
/// Every component function should have the return type `-> impl IntoView`.
///
/// You can add Rust doc comments to component function arguments and the macro will use them to
/// generate documentation for the component.
///
/// Here’s how you would define and use a simple Leptos component which can accept custom properties for a name and age:
/// ```rust
/// # use leptos::*;
/// use std::time::Duration;
///
/// #[component]
/// fn HelloComponent(
///     /// The user's name.
///     name: String,
///     /// The user's age.
///     age: u8,
/// ) -> impl IntoView {
///     // create the signals (reactive values) that will update the UI
///     let (age, set_age) = create_signal(age);
///     // increase `age` by 1 every second
///     set_interval(
///         move || set_age.update(|age| *age += 1),
///         Duration::from_secs(1),
///     );
///
///     // return the user interface, which will be automatically updated
///     // when signal values change
///     view! {
///       <p>"Your name is " {name} " and you are " {move || age.get()} " years old."</p>
///     }
/// }
///
/// #[component]
/// fn App() -> impl IntoView {
///     view! {
///       <main>
///         <HelloComponent name="Greg".to_string() age=32/>
///       </main>
///     }
/// }
/// ```
///
/// Here are some important details about how Leptos components work within the framework:
/// * **The component function only runs once.** Your component function is not a “render” function
///    that re-runs whenever changes happen in the state. It’s a “setup” function that runs once to
///    create the user interface, and sets up a reactive system to update it. This means it’s okay
///    to do relatively expensive work within the component function, as it will only happen once,
///    not on every state change.
///
/// * Component names are usually in `PascalCase`. If you use a `snake_case` name, then the generated
///    component's name will still be in `PascalCase`. This is how the framework recognizes that
///    a particular tag is a component, not an HTML element.
///
/// ```
/// # use leptos::*;
///
/// // PascalCase: Generated component will be called MyComponent
/// #[component]
/// fn MyComponent() -> impl IntoView {}
///
/// // snake_case: Generated component will be called MySnakeCaseComponent
/// #[component]
/// fn my_snake_case_component() -> impl IntoView {}
/// ```
///
/// * You can pass generic arguments, and they can either be defined in a `where` clause
/// or inline in the generic block, but not in an `impl` in function argument position.
///
/// ```compile_error
/// // ❌ This won't work.
/// # use leptos::*;
/// use leptos::html::Div;
///
/// #[component]
/// fn MyComponent(render_prop: impl Fn() -> HtmlElement<Div>) -> impl IntoView {
/// }
/// ```
///
/// ```
/// // ✅ Do this instead
/// # use leptos::*;
/// use leptos::html::Div;
///
/// #[component]
/// fn MyComponent<T>(render_prop: T) -> impl IntoView
/// where
///     T: Fn() -> HtmlElement<Div>,
/// {
/// }
///
/// // or
/// #[component]
/// fn MyComponent2<T: Fn() -> HtmlElement<Div>>(
///     render_prop: T,
/// ) -> impl IntoView {
/// }
/// ```
///
/// 5. You can access the children passed into the component with the `children` property, which takes
///    an argument of the type `Children`. This is an alias for `Box<dyn FnOnce() -> Fragment>`.
///    If you need `children` to be a `Fn` or `FnMut`, you can use the `ChildrenFn` or `ChildrenFnMut`
///    type aliases.
///
/// ```
/// # use leptos::*;
/// #[component]
/// fn ComponentWithChildren(children: Children) -> impl IntoView {
///     view! {
///       <ul>
///         {children()
///           .nodes
///           .into_iter()
///           .map(|child| view! { <li>{child}</li> })
///           .collect::<Vec<_>>()}
///       </ul>
///     }
/// }
///
/// #[component]
/// fn WrapSomeChildren() -> impl IntoView {
///     view! {
///       <ComponentWithChildren>
///         "Ooh, look at us!"
///         <span>"We're being projected!"</span>
///       </ComponentWithChildren>
///     }
/// }
/// ```
///
/// ## Customizing Properties
/// You can use the `#[prop]` attribute on individual component properties (function arguments) to
/// customize the types that component property can receive. You can use the following attributes:
/// * `#[prop(into)]`: This will call `.into()` on any value passed into the component prop. (For example,
///   you could apply `#[prop(into)]` to a prop that takes
///   [Signal](https://docs.rs/leptos/latest/leptos/struct.Signal.html), which would
///   allow users to pass a [ReadSignal](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html) or
///   [RwSignal](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html)
///   and automatically convert it.)
/// * `#[prop(optional)]`: If the user does not specify this property when they use the component,
///   it will be set to its default value. If the property type is `Option<T>`, values should be passed
///   as `name=T` and will be received as `Some(T)`.
/// * `#[prop(optional_no_strip)]`: The same as `optional`, but requires values to be passed as `None` or
///   `Some(T)` explicitly. This means that the optional property can be omitted (and be `None`), or explicitly
///   specified as either `None` or `Some(T)`.
/// ```rust
/// # use leptos::*;
///
/// #[component]
/// pub fn MyComponent(
///     #[prop(into)] name: String,
///     #[prop(optional)] optional_value: Option<i32>,
///     #[prop(optional_no_strip)] optional_no_strip: Option<i32>,
/// ) -> impl IntoView {
///     // whatever UI you need
/// }
///
/// #[component]
/// pub fn App() -> impl IntoView {
///     view! {
///       <MyComponent
///         name="Greg" // automatically converted to String with `.into()`
///         optional_value=42 // received as `Some(42)`
///         optional_no_strip=Some(42) // received as `Some(42)`
///       />
///       <MyComponent
///         name="Bob" // automatically converted to String with `.into()`
///         // optional values can both be omitted, and received as `None`
///       />
///     }
/// }
/// ```
#[proc_macro_error2::proc_macro_error]
#[proc_macro_attribute]
pub fn component(args: proc_macro::TokenStream, s: TokenStream) -> TokenStream {
    let is_transparent = if !args.is_empty() {
        let transparent = parse_macro_input!(args as syn::Ident);

        if transparent != "transparent" {
            abort!(
                transparent,
                "only `transparent` is supported";
                help = "try `#[component(transparent)]` or `#[component]`"
            );
        }

        true
    } else {
        false
    };

    let Ok(mut dummy) = syn::parse::<DummyModel>(s.clone()) else {
        return s;
    };
    let parse_result = syn::parse::<component::Model>(s);

    if let (ref mut unexpanded, Ok(model)) = (&mut dummy, parse_result) {
        let expanded = model.is_transparent(is_transparent).into_token_stream();
        unexpanded.sig.ident =
            unmodified_fn_name_from_fn_name(&unexpanded.sig.ident);
        quote! {
            #expanded
            #[doc(hidden)]
            #[allow(non_snake_case, dead_code, clippy::too_many_arguments)]
            #unexpanded
        }
    } else {
        dummy.sig.ident = unmodified_fn_name_from_fn_name(&dummy.sig.ident);
        quote! {
            #[doc(hidden)]
            #[allow(non_snake_case, dead_code, clippy::too_many_arguments)]
            #dummy
        }
    }
    .into()
}

/// Defines a component as an interactive island when you are using the
/// `experimental-islands` feature of Leptos. Apart from the macro name,
/// the API is the same as the [`component`](macro@component) macro.
///
/// When you activate the `experimental-islands` feature, every `#[component]`
/// is server-only by default. This "default to server" behavior is important:
/// you opt into shipping code to the client, rather than opting out. You can
/// opt into client-side interactivity for any given component by changing from
///  `#[component]` to `#[island]`—the two macros are otherwise identical.
///
/// Everything that is included inside an island will be compiled to WASM and
/// shipped to the browser. So the key to really benefiting from this architecture
/// is to make islands as small as possible, and include only the minimal
/// required amount of functionality in islands themselves.
///
/// Only code included in an island itself is compiled to WASM. This means:
/// 1. `children` can be provided from a server `#[component]` to an `#[island]`
/// without the island needing to be able to hydrate them.
/// 2. Props can be passed from the server to an island.
///
/// ## Present Limitations
/// A few noteworthy limitations, at the moment:
/// 1. `children` are completely opaque in islands. You can't iterate over `children`;
/// in fact they're all bundled into a single `<leptos-children>` HTML element.
/// 2. Similarly, `children` need to be used in the HTML rendered on the server.
/// If they need to be displayed conditionally, they should be included in the HTML
/// and rendered or not using `display: none` rather than `<Show>` or ordinary control flow.
/// This is because the children aren't serialized at all, other than as HTML: if that
/// HTML isn't present in the DOM, even if hidden, it is never sent and not available
/// to the client at all.
///
/// ## Example
/// ```rust,ignore
/// use leptos::*;
///
/// #[component]
/// pub fn App() -> impl IntoView {
///     // this would panic if it ran in the browser
///     // but because this isn't an island, it only runs on the server
///     let file =
///         std::fs::read_to_string("./src/is_this_a_server_component.txt")
///             .unwrap();
///     let len = file.len();
///
///     view! {
///         <p>"The starting value for the button is the file's length."</p>
///         // `value` is serialized and given to the island as a prop
///         <Island value=len>
///             // `file` is only available on the server
///             // island props are projected in, so we can nest
///             // server-only content inside islands inside server content etc.
///             <p>{file}</p>
///         </Island>
///     }
/// }
///
/// #[island]
/// pub fn Island(
///     #[prop(into)] value: RwSignal<usize>,
///     children: Children,
/// ) -> impl IntoView {
///     // because `RwSignal<T>` implements `From<T>`, we can pass in a plain
///     // value and use it as the starting value of a signal here
///     view! {
///         <button on:click=move |_| value.update(|n| *n += 1)>
///             {value}
///         </button>
///         {children()}
///     }
/// }
/// ```
#[proc_macro_error2::proc_macro_error]
#[proc_macro_attribute]
pub fn island(_args: proc_macro::TokenStream, s: TokenStream) -> TokenStream {
    let Ok(mut dummy) = syn::parse::<DummyModel>(s.clone()) else {
        return s;
    };
    let parse_result = syn::parse::<component::Model>(s);

    if let (ref mut unexpanded, Ok(model)) = (&mut dummy, parse_result) {
        let expanded = model.is_island().into_token_stream();
        if !matches!(unexpanded.vis, Visibility::Public(_)) {
            unexpanded.vis = Visibility::Public(Pub {
                span: unexpanded.vis.span(),
            })
        }
        unexpanded.sig.ident =
            unmodified_fn_name_from_fn_name(&unexpanded.sig.ident);
        quote! {
            #expanded
            #[doc(hidden)]
            #[allow(non_snake_case, dead_code, clippy::too_many_arguments)]
            #unexpanded
        }
    } else {
        dummy.sig.ident = unmodified_fn_name_from_fn_name(&dummy.sig.ident);
        quote! {
            #[doc(hidden)]
            #[allow(non_snake_case, dead_code, clippy::too_many_arguments)]
            #dummy
        }
    }
    .into()
}

/// Annotates a struct so that it can be used with your Component as a `slot`.
///
/// The `#[slot]` macro allows you to annotate plain Rust struct as component slots and use them
/// within your Leptos [`component`](macro@crate::component) properties. The struct can contain any number
/// of fields. When you use the component somewhere else, the names of the slot fields are the
/// names of the properties you use in the [view](crate::view!) macro.
///
/// Here’s how you would define and use a simple Leptos component which can accept a custom slot:
/// ```rust
/// # use leptos::*;
/// use std::time::Duration;
///
/// #[slot]
/// struct HelloSlot {
///     // Same prop syntax as components.
///     #[prop(optional)]
///     children: Option<Children>,
/// }
///
/// #[component]
/// fn HelloComponent(
///     
///     /// Component slot, should be passed through the <HelloSlot slot> syntax.
///     hello_slot: HelloSlot,
/// ) -> impl IntoView {
///     // mirror the children from the slot, if any were passed
///     if let Some(children) = hello_slot.children {
///         (children)().into_view()
///     } else {
///         ().into_view()
///     }
/// }
///
/// #[component]
/// fn App() -> impl IntoView {
///     view! {
///         <HelloComponent>
///             <HelloSlot slot>
///                 "Hello, World!"
///             </HelloSlot>
///         </HelloComponent>
///     }
/// }
/// ```
///
/// /// Here are some important details about how slots work within the framework:
/// 1. Most of the same rules from [`macro@component`] macro should also be followed on slots.
///
/// 2. Specifying only `slot` without a name (such as in `<HelloSlot slot>`) will default the chosen slot to
/// the a snake case version of the slot struct name (`hello_slot` for `<HelloSlot>`).
///
/// 3. Event handlers cannot be specified directly on the slot.
///
/// ```compile_error
/// // ❌ This won't work
/// # use leptos::*;
///
/// #[slot]
/// struct SlotWithChildren {
///     children: Children,
/// }
///
/// #[component]
/// fn ComponentWithSlot(slot: SlotWithChildren) -> impl IntoView {
///     (slot.children)()
/// }
///
/// #[component]
/// fn App() -> impl IntoView {
///     view! {
///         <ComponentWithSlot>
///           <SlotWithChildren slot:slot on:click=move |_| {}>
///             <h1>"Hello, World!"</h1>
///           </SlotWithChildren>
///         </ComponentWithSlot>
///     }
/// }
/// ```
///
/// ```
/// // ✅ Do this instead
/// # use leptos::*;
///
/// #[slot]
/// struct SlotWithChildren {
///     children: Children,
/// }
///
/// #[component]
/// fn ComponentWithSlot(slot: SlotWithChildren) -> impl IntoView {
///     (slot.children)()
/// }
///
/// #[component]
/// fn App() -> impl IntoView {
///     view! {
///         <ComponentWithSlot>
///           <SlotWithChildren slot:slot>
///             <div on:click=move |_| {}>
///               <h1>"Hello, World!"</h1>
///             </div>
///           </SlotWithChildren>
///         </ComponentWithSlot>
///     }
/// }
/// ```
#[proc_macro_error2::proc_macro_error]
#[proc_macro_attribute]
pub fn slot(args: proc_macro::TokenStream, s: TokenStream) -> TokenStream {
    if !args.is_empty() {
        abort!(
            Span::call_site(),
            "no arguments are supported";
            help = "try just `#[slot]`"
        );
    }

    parse_macro_input!(s as slot::Model)
        .into_token_stream()
        .into()
}

/// Declares that a function is a [server function](https://docs.rs/server_fn/latest/server_fn/index.html).
/// This means that its body will only run on the server, i.e., when the `ssr` feature on this crate is enabled.
///
/// If you call a server function from the client (i.e., when the `csr` or `hydrate` features
/// are enabled), it will instead make a network request to the server.
///
/// ## Named Arguments
///
/// You can provide any combination of the following named arguments:
/// - `name`: sets the identifier for the server function’s type, which is a struct created
///    to hold the arguments (defaults to the function identifier in PascalCase)
/// - `prefix`: a prefix at which the server function handler will be mounted (defaults to `/api`)
///    your prefix must begin with `/`. Otherwise your function won't be found.
/// - `endpoint`: specifies the exact path at which the server function handler will be mounted,
///   relative to the prefix (defaults to the function name followed by unique hash)
/// - `input`: the encoding for the arguments (defaults to `PostUrl`)
/// - `output`: the encoding for the response (defaults to `Json`)
/// - `client`: a custom `Client` implementation that will be used for this server fn
/// - `encoding`: (legacy, may be deprecated in future) specifies the encoding, which may be one
///   of the following (not case sensitive)
///     - `"Url"`: `POST` request with URL-encoded arguments and JSON response
///     - `"GetUrl"`: `GET` request with URL-encoded arguments and JSON response
///     - `"Cbor"`: `POST` request with CBOR-encoded arguments and response
///     - `"GetCbor"`: `GET` request with URL-encoded arguments and CBOR response
/// - `req` and `res` specify the HTTP request and response types to be used on the server (these
///   should usually only be necessary if you are integrating with a server other than Actix/Axum)
/// - `impl_from`: specifies whether to implement trait `From` for server function's type or not.
///   By default, if a server function only has one argument, the macro automatically implements the `From` trait
///   to convert from the argument type to the server function type, and vice versa, allowing you to convert
///   between them easily. Setting `impl_from` to `false` disables this, which can be necessary for argument types
///   for which this would create a conflicting implementation. (defaults to `true`)
///
/// ```rust,ignore
/// #[server(
///   name = SomeStructName,
///   prefix = "/my_api",
///   endpoint = "my_fn",
///   input = Cbor,
///   output = Json
///   impl_from = true
/// )]
/// pub async fn my_wacky_server_fn(input: Vec<String>) -> Result<usize, ServerFnError> {
///   todo!()
/// }
/// ```
///
/// ## Server Function Encodings
///
/// Server functions are designed to allow a flexible combination of `input` and `output` encodings, the set
/// of which can be found in the [`server_fn::codec`](../server_fn/codec/index.html) module.
///
/// The serialization/deserialization process for server functions consists of a series of steps,
/// each of which is represented by a different trait:
/// 1. [`IntoReq`](../server_fn/codec/trait.IntoReq.html): The client serializes the [`ServerFn`](../server_fn/trait.ServerFn.html) argument type into an HTTP request.
/// 2. The [`Client`](../server_fn/client/trait.Client.html) sends the request to the server.
/// 3. [`FromReq`](../server_fn/codec/trait.FromReq.html): The server deserializes the HTTP request back into the [`ServerFn`](../server_fn/client/trait.Client.html) type.
/// 4. The server calls calls [`ServerFn::run_body`](../server_fn/trait.ServerFn.html#tymethod.run_body) on the data.
/// 5. [`IntoRes`](../server_fn/codec/trait.IntoRes.html): The server serializes the [`ServerFn::Output`](../server_fn/trait.ServerFn.html#associatedtype.Output) type into an HTTP response.
/// 6. The server integration applies any middleware from [`ServerFn::middleware`](../server_fn/middleware/index.html) and responds to the request.
/// 7. [`FromRes`](../server_fn/codec/trait.FromRes.html): The client deserializes the response back into the [`ServerFn::Output`](../server_fn/trait.ServerFn.html#associatedtype.Output) type.
///
/// Whatever encoding is provided to `input` should implement `IntoReq` and `FromReq`. Whatever encoding is provided
/// to `output` should implement `IntoRes` and `FromRes`.
///
/// ## Default Values for Parameters
///
/// Individual function parameters can be annotated with `#[server(default)]`, which will pass
/// through `#[serde(default)]`. This is useful for the empty values of arguments with some
/// encodings. The URL encoding, for example, omits a field entirely if it is an empty `Vec<_>`,
/// but this causes a deserialization error: the correct solution is to add `#[server(default)]`.
/// ```rust,ignore
/// pub async fn with_default_value(#[server(default)] values: Vec<u32>) /* etc. */
/// ```
///
/// ## Important Notes
/// - **Server functions must be `async`.** Even if the work being done inside the function body
///   can run synchronously on the server, from the client’s perspective it involves an asynchronous
///   function call.
/// - **Server functions must return `Result<T, ServerFnError>`.** Even if the work being done
///   inside the function body can’t fail, the processes of serialization/deserialization and the
///   network call are fallible.
///     - [`ServerFnError`](../server_fn/error/enum.ServerFnError.html) can be generic over some custom error type. If so, that type should implement
///       [`FromStr`](std::str::FromStr) and [`Display`](std::fmt::Display), but does not need to implement [`Error`](std::error::Error). This is so the value
///       can be easily serialized and deserialized along with the result.
/// - **Server functions are part of the public API of your application.** A server function is an
///   ad hoc HTTP API endpoint, not a magic formula. Any server function can be accessed by any HTTP
///   client. You should take care to sanitize any data being returned from the function to ensure it
///   does not leak data that should exist only on the server.
/// - **Server functions can’t be generic.** Because each server function creates a separate API endpoint,
///   it is difficult to monomorphize. As a result, server functions cannot be generic (for now?) If you need to use
///   a generic function, you can define a generic inner function called by multiple concrete server functions.
/// - **Arguments and return types must be serializable.** We support a variety of different encodings,
///   but one way or another arguments need to be serialized to be sent to the server and deserialized
///   on the server, and the return type must be serialized on the server and deserialized on the client.
///   This means that the set of valid server function argument and return types is a subset of all
///   possible Rust argument and return types. (i.e., server functions are strictly more limited than
///   ordinary functions.)
/// - **Context comes from the server.** Server functions are provided access to the HTTP request and other relevant
///   server data via the server integrations, but they do *not* have access to reactive state that exists in the client.
/// - Your server must be ready to handle the server functions at the API prefix you list. The easiest way to do this
///   is to use the `handle_server_fns` function from [`leptos_actix`](https://docs.rs/leptos_actix/latest/leptos_actix/fn.handle_server_fns.html)
///   or [`leptos_axum`](https://docs.rs/leptos_axum/latest/leptos_axum/fn.handle_server_fns.html).
/// - **Server functions must have unique paths**. Unique paths are automatically generated for each
///   server function. If you choose to specify a path in the fourth argument, you must ensure that these
///   are unique. You cannot define two server functions with the same URL prefix and endpoint path,
///   even if they have different URL encodings, e.g. a POST method at `/api/foo` and a GET method at `/api/foo`.
#[proc_macro_attribute]
#[proc_macro_error]
pub fn server(args: proc_macro::TokenStream, s: TokenStream) -> TokenStream {
    match server_fn_macro::server_macro_impl(
        args.into(),
        s.into(),
        Some(syn::parse_quote!(::leptos::server_fn)),
        "/api",
        None,
        None,
    ) {
        Err(e) => e.to_compile_error().into(),
        Ok(s) => s.to_token_stream().into(),
    }
}

/// Derives a trait that parses a map of string keys and values into a typed
/// data structure, e.g., for route params.
#[proc_macro_derive(Params, attributes(params))]
pub fn params_derive(
    input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    match syn::parse(input) {
        Ok(ast) => params::params_impl(&ast),
        Err(err) => err.to_compile_error().into(),
    }
}

pub(crate) fn attribute_value(attr: &KeyedAttribute) -> &syn::Expr {
    match attr.value() {
        Some(value) => value,
        None => abort!(attr.key, "attribute should have value"),
    }
}

/// Generates a `slice` into a struct with a default getter and setter.
///
/// Can be used to access deeply nested fields within a global state object.
///
/// ```rust
/// # use leptos::{create_runtime, create_rw_signal};
/// # use leptos_macro::slice;
/// # let runtime = create_runtime();
///
/// #[derive(Default)]
/// pub struct Outer {
///     count: i32,
///     inner: Inner,
/// }
///
/// #[derive(Default)]
/// pub struct Inner {
///     inner_count: i32,
///     inner_name: String,
/// }
///
/// let outer_signal = create_rw_signal(Outer::default());
///
/// let (count, set_count) = slice!(outer_signal.count);
///
/// let (inner_count, set_inner_count) = slice!(outer_signal.inner.inner_count);
/// let (inner_name, set_inner_name) = slice!(outer_signal.inner.inner_name);
/// ```
#[proc_macro]
pub fn slice(input: TokenStream) -> TokenStream {
    slice::slice_impl(input)
}