1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
//! Fast lexical conversion routines for a `no_std` environment.
//!
//! lexical-core is a low-level API for number-to-string and
//! string-to-number conversions, without requiring a system
//! allocator. If you would like to use a high-level API that
//! writes to and parses from `String` and `&str`, respectively,
//! please look at [lexical](https://crates.io/crates/lexical)
//! instead.
//!
//! Despite the low-level API and focus on performance, lexical-core
//! strives to be simple and yet configurable: despite supporting nearly
//! every float and integer format available, it only exports 4 write
//! functions and 4 parse functions.
//!
//! lexical-core is well-tested, and has been downloaded more than 5 million
//! times and currently has no known errors in correctness. lexical-core
//! prioritizes performance above all else, and aims to be competitive
//! or faster than any other float or integer parser and writer.
//!
//! In addition, despite having a large number of features, configurability,
//! and a focus on performance, we also strive for fast compile times.
//! Recent versions also add support for smaller binary sizes, as well
//! ideal for embedded or web environments, where executable bloat can
//! be much more detrimental than performance.
//!
//! # Getting Started
//!
//! ```rust
//! # #[cfg(all(
//! # feature = "parse-floats",
//! # feature = "parse-integers",
//! # feature = "write-floats",
//! # feature = "write-integers",
//! # ))]
//! # {
//!
//! // String to number using Rust slices.
//! // The argument is the byte string parsed.
//! let f: f32 = lexical_core::parse(b"3.5").unwrap(); // 3.5
//! let i: i32 = lexical_core::parse(b"15").unwrap(); // 15
//!
//! // All lexical_core parsers are checked, they validate the
//! // input data is entirely correct, and stop parsing when invalid data
//! // is found, or upon numerical overflow.
//! let r = lexical_core::parse::<u8>(b"256"); // Err(ErrorCode::Overflow.into())
//! let r = lexical_core::parse::<u8>(b"1a5"); // Err(ErrorCode::InvalidDigit.into())
//!
//! // In order to extract and parse a number from a substring of the input
//! // data, use `parse_partial`. These functions return the parsed value and
//! // the number of processed digits, allowing you to extract and parse the
//! // number in a single pass.
//! let r = lexical_core::parse_partial::<i8>(b"3a5"); // Ok((3, 1))
//!
//! // If an insufficiently long buffer is passed, the serializer will panic.
//!
//! // PANICS
//! let mut buf = [b'0'; 1];
//! //let slc = lexical_core::write::<i64>(15, &mut buf);
//!
//! // In order to guarantee the buffer is long enough, always ensure there
//! // are at least `T::FORMATTED_SIZE` bytes, which requires the
//! // `lexical_core::FormattedSize` trait to be in scope.
//! use lexical_core::FormattedSize;
//! let mut buf = [b'0'; f64::FORMATTED_SIZE];
//! let slc = lexical_core::write::<f64>(15.1, &mut buf);
//! assert_eq!(slc, b"15.1");
//!
//! // When the `radix` feature is enabled, for decimal floats, using
//! // `T::FORMATTED_SIZE` may significantly overestimate the space
//! // required to format the number. Therefore, the
//! // `T::FORMATTED_SIZE_DECIMAL` constants allow you to get a much
//! // tighter bound on the space required.
//! let mut buf = [b'0'; f64::FORMATTED_SIZE_DECIMAL];
//! let slc = lexical_core::write::<f64>(15.1, &mut buf);
//! assert_eq!(slc, b"15.1");
//! # }
//! ```
//!
//! # Conversion API
#![cfg_attr(feature = "write", doc = " **Write**")]
#![cfg_attr(feature = "write", doc = "")]
#![cfg_attr(feature = "write", doc = " - [`write`]")]
#![cfg_attr(feature = "write", doc = " - [`write_with_options`]")]
//!
#![cfg_attr(feature = "write", doc = " **From String**")]
#![cfg_attr(feature = "write", doc = "")]
#![cfg_attr(feature = "parse", doc = " - [`parse`]")]
#![cfg_attr(feature = "parse", doc = " - [`parse_partial`]")]
#![cfg_attr(feature = "parse", doc = " - [`parse_with_options`]")]
#![cfg_attr(feature = "parse", doc = " - [`parse_partial_with_options`]")]
//!
//! # Features
//!
//! In accordance with the Rust ethos, all features are additive: the crate
//! may be build with `--all-features` without issue. The following features
//! are enabled by default:
//!
//! * `std`
//! * `write-integers`
//! * `write-floats`
//! * `parse-integers`
//! * `parse-floats`
//!
//! A complete description of supported features includes:
//!
//! #### std
//!
//! Enable use of the standard library. Currently, the standard library
//! is not used for any functionality, and may be disabled without any
//! change in functionality on stable.
//!
//! #### write-integers
//!
//! Enable support for writing integers to string.
//!
//! #### write-floats
//!
//! Enable support for writing floating-point numbers to string.
//!
//! #### parse-integers
//!
//! Enable support for parsing integers from string.
//!
//! #### parsing-floats
//!
//! Enable support for parsing floating-point numbers from string.
//!
//! #### format
//!
//! Adds support for the entire format API (using [`NumberFormatBuilder`]).
//! This allows extensive configurability for parsing and writing numbers
//! in custom formats, with different valid syntax requirements.
//!
//! For example, in JSON, the following floats are valid or invalid:
//!
//! ```text
//! -1 // valid
//! +1 // invalid
//! 1 // valid
//! 1. // invalid
//! .1 // invalid
//! 0.1 // valid
//! nan // invalid
//! inf // invalid
//! Infinity // invalid
//! ```
//!
//! All of the finite numbers are valid in Rust, and Rust provides constants
//! for non-finite floats. In order to parse standard-conforming JSON floats
//! using lexical, you may use the following approach:
//!
//! ```rust
//! # #[cfg(all(feature = "parse-floats", feature = "format"))] {
//! use lexical_core::{format, parse_with_options, ParseFloatOptions, Result};
//!
//! fn parse_json_float<Bytes: AsRef<[u8]>>(bytes: Bytes) -> Result<f64> {
//! let options = ParseFloatOptions::new();
//! parse_with_options::<_, { format::JSON }>(bytes.as_ref(), &options)
//! }
//! # }
//! ```
//!
//! See the [Number Format](#number-format) section below for more information.
//!
//! #### power-of-two
//!
//! Enable doing numeric conversions to and from strings with power-of-two
//! radixes. This avoids most of the overhead and binary bloat of the radix
//! feature, while enabling support for the most commonly-used radixes.
//!
//! #### radix
//!
//! Enable doing numeric conversions to and from strings for all radixes.
//! This requires substantially more static storage than `power-of-two`,
//! and increases compile times by a fair amount, but can be quite useful
//! for esoteric programming languages which use duodecimal floats, for
//! example.
//!
//! #### compact
//!
//! Reduce the generated code size at the cost of performance. This minimizes
//! the number of static tables, inlining, and generics used, drastically
//! reducing the size of the generated binaries.
//!
//! #### safe
//!
//! This replaces most unchecked indexing, required in cases where the
//! compiler cannot ellide the check, with checked indexing. However,
//! it does not fully replace all unsafe behavior with safe behavior.
//! To minimize the risk of UB and out-of-bounds reads/writers, extensive
//! edge-cases, property-based tests, and fuzzing is done with both the
//! safe feature enabled and disabled, with the tests verified by Miri
//! and Valgrind.
//!
//! # Configuration API
//!
//! Lexical provides two main levels of configuration:
//! - The [`NumberFormatBuilder`], creating a packed struct with custom
//! formatting options.
//! - The Options API.
//!
//! ## Number Format
//!
//! The number format class provides numerous flags to specify
//! number parsing or writing. When the `power-of-two` feature is
//! enabled, additional flags are added:
//! - The radix for the significant digits (default `10`).
//! - The radix for the exponent base (default `10`).
//! - The radix for the exponent digits (default `10`).
//!
//! When the `format` feature is enabled, numerous other syntax and
//! digit separator flags are enabled, including:
//! - A digit separator character, to group digits for increased legibility.
//! - Whether leading, trailing, internal, and consecutive digit separators are
//! allowed.
//! - Toggling required float components, such as digits before the decimal
//! point.
//! - Toggling whether special floats are allowed or are case-sensitive.
//!
//! Many pre-defined constants therefore exist to simplify common use-cases,
//! including:
//! - `JSON`, `XML`, `TOML`, `YAML`, `SQLite`, and many more.
//! - `Rust`, `Python`, `C#`, `FORTRAN`, `COBOL` literals and strings, and many
//! more.
//!
//! ## Options API
//!
//! The Options API provides high-level options to specify number parsing
//! or writing, options not intrinsically tied to a number format.
//! For example, the Options API provides:
//! - The exponent character (default `b'e'`, or `b'^'`).
//! - The decimal point character (default `b'.'`).
//! - Custom `NaN`, `Infinity` string representations.
//! - Whether to trim the fraction component from integral floats.
//! - The exponent break point for scientific notation.
//! - The maximum and minimum number of significant digits to write.
//! - The rounding mode when truncating significant digits while writing.
//!
//! The available options are:
#![cfg_attr(feature = "parse-floats", doc = " - [`ParseFloatOptions`]")]
#![cfg_attr(feature = "parse-integers", doc = " - [`ParseIntegerOptions`]")]
#![cfg_attr(feature = "write-floats", doc = " - [`WriteFloatOptions`]")]
#![cfg_attr(feature = "write-integers", doc = " - [`WriteIntegerOptions`]")]
//!
//! In addition, pre-defined constants for each category of options may
//! be found in their respective modules.
//!
//! ## Example
//!
//! An example of creating your own options to parse European-style
//! numbers (which use commas as decimal points, and periods as digit
//! separators) is as follows:
//!
//! ```
//! # pub fn main() {
//! # #[cfg(all(feature = "parse_floats", feature = "format"))] {
//! // This creates a format to parse a European-style float number.
//! // The decimal point is a comma, and the digit separators (optional)
//! // are periods.
//! const EUROPEAN: u128 = lexical_core::NumberFormatBuilder::new()
//! .digit_separator(b'.')
//! .build();
//! let options = lexical_core::ParseFloatOptions::builder()
//! .decimal_point(b',')
//! .build()
//! .unwrap();
//! assert_eq!(
//! lexical_core::parse_with_options::<f32, EUROPEAN>(b"300,10", &options),
//! Ok(300.10)
//! );
//!
//! // Another example, using a pre-defined constant for JSON.
//! const JSON: u128 = lexical_core::format::JSON;
//! let options = lexical_core::ParseFloatOptions::new();
//! assert_eq!(
//! lexical_core::parse_with_options::<f32, JSON>(b"0e1", &options),
//! Ok(0.0)
//! );
//! assert_eq!(
//! lexical_core::parse_with_options::<f32, JSON>(b"1E+2", &options),
//! Ok(100.0)
//! );
//! # }
//! # }
//! ```
//!
//! # Algorithms
//!
//! - [Parsing Floats](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-parse-float/docs/Algorithm.md)
//! - [Parsing Integers](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-parse-integer/docs/Algorithm.md)
//! - [Writing Floats](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-write-float/docs/Algorithm.md)
//! - [Writing Integers](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-write-integer/docs/Algorithm.md)
//!
//! # Benchmarks
//!
//! - [Parsing Floats](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-parse-float/docs/Benchmarks.md)
//! - [Parsing Integers](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-parse-integer/docs/Benchmarks.md)
//! - [Writing Floats](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-write-float/docs/Benchmarks.md)
//! - [Writing Integers](https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-write-integer/docs/Benchmarks.md)
//! - [Comprehensive Benchmarks](https://github.com/Alexhuszagh/lexical-benchmarks)
//!
//! A comprehensive analysis of lexical commits and their performance can be
//! found in [benchmarks].
//!
//! # Design
//!
//! - [Binary Size](https://github.com/Alexhuszagh/rust-lexical/blob/main/docs/BinarySize.md)
//! - [Build Timings](https://github.com/Alexhuszagh/rust-lexical/blob/main/docs/BuildTimings.md)
//! - [Digit Separators](https://github.com/Alexhuszagh/rust-lexical/blob/main/docs/DigitSeparators.md)
//!
//! # Version Support
//!
//! The minimum, standard, required version is 1.63.0, for const generic
//! support. Older versions of lexical support older Rust versions.
//!
//! # Safety
//!
//! There is no non-trivial unsafe behavior in [lexical][crate] itself,
//! however, any incorrect safety invariants in our parsers and writers
//! (`lexical-parse-float`, `lexical-parse-integer`, `lexical-write-float`,
//! and `lexical-write-integer`) could cause those safety invariants to
//! be broken.
//!
//! [`write`]: crate::write
//! [`write_with_options`]: crate::write_with_options
//! [`parse`]: crate::parse
//! [`parse_partial`]: crate::parse_partial
//! [`parse_with_options`]: crate::parse_with_options
//! [`parse_partial_with_options`]: crate::parse_partial_with_options
//!
//! [`NumberFormatBuilder`]: crate::NumberFormatBuilder
//! [`ParseFloatOptions`]: crate::ParseFloatOptions
//! [`ParseIntegerOptions`]: crate::ParseIntegerOptions
//! [`WriteFloatOptions`]: crate::WriteFloatOptions
//! [`WriteIntegerOptions`]: crate::WriteIntegerOptions
//! [benchmarks]: <https://github.com/Alexhuszagh/lexical-benchmarks>
// We want to have the same safety guarantees as Rust core,
// so we allow unused unsafe to clearly document safety guarantees.
#![allow(unused_unsafe)]
#![cfg_attr(feature = "lint", warn(unsafe_op_in_unsafe_fn))]
#![cfg_attr(not(feature = "std"), no_std)]
#![deny(
clippy::doc_markdown,
clippy::unnecessary_safety_comment,
clippy::semicolon_if_nothing_returned,
clippy::unwrap_used,
clippy::as_underscore,
clippy::doc_markdown
)]
#![allow(
// used when concepts are logically separate
clippy::match_same_arms,
// loss of precision is intentional
clippy::integer_division,
// mathematical names use 1-character identifiers
clippy::min_ident_chars,
// these are not cryptographically secure contexts
clippy::integer_division_remainder_used,
// this can be intentional
clippy::module_name_repetitions,
// this is intentional: already passing a pointer and need performance
clippy::needless_pass_by_value,
// we use this for inline formatting for unsafe blocks
clippy::semicolon_inside_block,
)]
// Re-exports
#[cfg(feature = "parse-floats")]
pub use lexical_parse_float::{
options as parse_float_options,
Options as ParseFloatOptions,
OptionsBuilder as ParseFloatOptionsBuilder,
};
#[cfg(feature = "parse-floats")]
use lexical_parse_float::{
FromLexical as FromFloat,
FromLexicalWithOptions as FromFloatWithOptions,
};
#[cfg(feature = "parse-integers")]
pub use lexical_parse_integer::{
options as parse_integer_options,
Options as ParseIntegerOptions,
OptionsBuilder as ParseIntegerOptionsBuilder,
};
#[cfg(feature = "parse-integers")]
use lexical_parse_integer::{
FromLexical as FromInteger,
FromLexicalWithOptions as FromIntegerWithOptions,
};
#[cfg(feature = "f16")]
pub use lexical_util::bf16::bf16;
#[cfg(feature = "write")]
pub use lexical_util::constants::{FormattedSize, BUFFER_SIZE};
#[cfg(feature = "parse")]
pub use lexical_util::error::Error;
#[cfg(feature = "f16")]
pub use lexical_util::f16::f16;
pub use lexical_util::format::{self, format_error, format_is_valid, NumberFormatBuilder};
#[cfg(feature = "parse")]
pub use lexical_util::options::ParseOptions;
#[cfg(feature = "write")]
pub use lexical_util::options::WriteOptions;
#[cfg(feature = "parse")]
pub use lexical_util::result::Result;
#[cfg(feature = "parse")]
use lexical_util::{from_lexical, from_lexical_with_options};
#[cfg(feature = "write")]
use lexical_util::{to_lexical, to_lexical_with_options};
#[cfg(feature = "write-floats")]
pub use lexical_write_float::{
options as write_float_options,
Options as WriteFloatOptions,
OptionsBuilder as WriteFloatOptionsBuilder,
};
#[cfg(feature = "write-floats")]
use lexical_write_float::{ToLexical as ToFloat, ToLexicalWithOptions as ToFloatWithOptions};
#[cfg(feature = "write-integers")]
pub use lexical_write_integer::{
options as write_integer_options,
Options as WriteIntegerOptions,
OptionsBuilder as WriteIntegerOptionsBuilder,
};
#[cfg(feature = "write-integers")]
use lexical_write_integer::{ToLexical as ToInteger, ToLexicalWithOptions as ToIntegerWithOptions};
// API
// ---
#[cfg(feature = "parse")]
from_lexical!();
#[cfg(feature = "parse")]
from_lexical_with_options!();
#[cfg(feature = "write")]
to_lexical!();
#[cfg(feature = "write")]
to_lexical_with_options!();
/// Implement `FromLexical` and `FromLexicalWithOptions` for numeric types.
///
/// * `t` - The numerical type.
/// * `from` - The internal trait that implements
/// `from_lexical`.
/// * `from_lexical_with_options` - The internal trait that implements
/// `from_lexical`.
/// * `options` - The options type to configure settings.
#[cfg(feature = "parse")]
macro_rules! from_lexical_impl {
($t:ident, $from:ident, $from_options:ident, $options:ident) => {
impl FromLexical for $t {
#[cfg_attr(not(feature = "compact"), inline)]
fn from_lexical(bytes: &[u8]) -> Result<Self> {
<Self as $from>::from_lexical(bytes)
}
#[cfg_attr(not(feature = "compact"), inline)]
fn from_lexical_partial(bytes: &[u8]) -> Result<(Self, usize)> {
<Self as $from>::from_lexical_partial(bytes)
}
}
impl FromLexicalWithOptions for $t {
type Options = $options;
#[cfg_attr(not(feature = "compact"), inline)]
fn from_lexical_with_options<const FORMAT: u128>(
bytes: &[u8],
options: &Self::Options,
) -> Result<Self> {
<Self as $from_options>::from_lexical_with_options::<FORMAT>(bytes, options)
}
#[cfg_attr(not(feature = "compact"), inline)]
fn from_lexical_partial_with_options<const FORMAT: u128>(
bytes: &[u8],
options: &Self::Options,
) -> Result<(Self, usize)> {
<Self as $from_options>::from_lexical_partial_with_options::<FORMAT>(bytes, options)
}
}
};
}
/// Implement `FromLexical` and `FromLexicalWithOptions` for integers.
#[cfg(feature = "parse-integers")]
macro_rules! integer_from_lexical {
($($t:ident)*) => ($(
from_lexical_impl!($t, FromInteger, FromIntegerWithOptions, ParseIntegerOptions);
)*);
}
#[cfg(feature = "parse-integers")]
integer_from_lexical! { u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize }
/// Implement `FromLexical` and `FromLexicalWithOptions` for floats.
#[cfg(feature = "parse-floats")]
macro_rules! float_from_lexical {
($($t:ident)*) => ($(
from_lexical_impl!($t, FromFloat, FromFloatWithOptions, ParseFloatOptions);
)*);
}
#[cfg(feature = "parse-floats")]
float_from_lexical! { f32 f64 }
/// Implement `ToLexical` and `ToLexicalWithOptions` for numeric types.
///
/// * `t` - The numerical type.
/// * `to` - The internal trait that implements
/// `to_lexical`.
/// * `to_lexical_with_options` - The internal trait that implements
/// `to_lexical`.
/// * `options` - The options type to configure settings.
#[cfg(feature = "write")]
macro_rules! to_lexical_impl {
($t:ident, $to:ident, $to_options:ident, $options:ident) => {
impl ToLexical for $t {
#[cfg_attr(not(feature = "compact"), inline)]
fn to_lexical(self, bytes: &mut [u8]) -> &mut [u8] {
<Self as $to>::to_lexical(self, bytes)
}
}
impl ToLexicalWithOptions for $t {
type Options = $options;
#[cfg_attr(not(feature = "compact"), inline(always))]
fn to_lexical_with_options<'a, const FORMAT: u128>(
self,
bytes: &'a mut [u8],
options: &Self::Options,
) -> &'a mut [u8] {
<Self as $to_options>::to_lexical_with_options::<FORMAT>(self, bytes, options)
}
}
};
}
/// Implement `ToLexical` and `ToLexicalWithOptions` for integers.
#[cfg(feature = "write-integers")]
macro_rules! integer_to_lexical {
($($t:ident)*) => ($(
to_lexical_impl!($t, ToInteger, ToIntegerWithOptions, WriteIntegerOptions);
)*);
}
#[cfg(feature = "write-integers")]
integer_to_lexical! { u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize }
/// Implement `ToLexical` and `ToLexicalWithOptions` for floats.
#[cfg(feature = "write-floats")]
macro_rules! float_to_lexical {
($($t:ident)*) => ($(
to_lexical_impl!($t, ToFloat, ToFloatWithOptions, WriteFloatOptions);
)*);
}
#[cfg(feature = "write-floats")]
float_to_lexical! { f32 f64 }
/// Write number to string.
///
/// Returns a subslice of the input buffer containing the written bytes,
/// starting from the same address in memory as the input slice.
///
/// * `value` - Number to serialize.
/// * `bytes` - Buffer to write number to.
///
/// # Panics
///
/// Panics if the buffer may not be large enough to hold the serialized
/// number. In order to ensure the function will not panic, provide a
/// buffer with at least `{integer}::FORMATTED_SIZE` elements.
///
/// # Example
///
/// ```
/// # pub fn main() {
/// #[cfg(feature = "write-floats")] {
/// // import `BUFFER_SIZE` to get the maximum bytes written by the number.
/// use lexical_core::BUFFER_SIZE;
///
/// let mut buffer = [0u8; BUFFER_SIZE];
/// let float = 3.14159265359_f32;
///
/// lexical_core::write(float, &mut buffer);
///
/// assert_eq!(&buffer[0..9], b"3.1415927");
/// # }
/// # }
/// ```
///
/// This will panic, because the buffer is not large enough:
///
/// ```should_panic
/// # #[cfg(feature = "write-floats")] {
/// // note: the buffer is only one byte large
/// let mut buffer = [0u8; 1];
/// let float = 3.14159265359_f32;
///
/// lexical_core::write(float, &mut buffer);
/// # }
/// # #[cfg(not(feature = "write-floats"))] {
/// # panic!("");
/// # }
/// ```
#[inline]
#[cfg(feature = "write")]
pub fn write<N: ToLexical>(n: N, bytes: &mut [u8]) -> &mut [u8] {
n.to_lexical(bytes)
}
/// Write number to string with custom options.
///
/// Returns a subslice of the input buffer containing the written bytes,
/// starting from the same address in memory as the input slice.
///
/// * `FORMAT` - Packed struct containing the number format.
/// * `value` - Number to serialize.
/// * `bytes` - Buffer to write number to.
/// * `options` - Options to customize number parsing.
///
/// # Panics
///
/// Panics if the buffer may not be large enough to hold the serialized
/// number. In order to ensure the function will not panic, provide a
/// buffer with at least `{integer}::FORMATTED_SIZE` elements. If you
/// are using custom digit precision control or exponent break points
/// for writing floats, these constants may be insufficient to store
/// the serialized number, and up to 1200 bytes may be required with
/// radix support.
///
/// If the provided `FORMAT` is not valid, the function may panic. Please
/// ensure `is_valid()` is called prior to using the format, or checking
/// its validity using a static assertion.
///
/// # Example
///
/// ```
/// # pub fn main() {
/// #[cfg(feature = "write-floats")] {
/// // import `BUFFER_SIZE` to get the maximum bytes written by the number.
/// use lexical_core::BUFFER_SIZE;
///
/// let mut buffer = [0u8; BUFFER_SIZE];
/// let float = 3.14159265359_f32;
///
/// const FORMAT: u128 = lexical_core::format::STANDARD;
/// let options = lexical_core::WriteFloatOptions::new();
/// lexical_core::write_with_options::<_, FORMAT>(float, &mut buffer, &options);
///
/// assert_eq!(&buffer[0..9], b"3.1415927");
/// # }
/// # }
/// ```
///
/// This will panic, because the buffer is not large enough:
///
/// ```should_panic
/// # #[cfg(feature = "write-floats")] {
/// // note: the buffer is only one byte large
/// let mut buffer = [0u8; 1];
/// let float = 3.14159265359_f32;
///
/// const FORMAT: u128 = lexical_core::format::STANDARD;
/// let options = lexical_core::WriteFloatOptions::new();
/// lexical_core::write_with_options::<_, FORMAT>(float, &mut buffer, &options);
/// # }
/// # #[cfg(not(feature = "write-floats"))] {
/// # panic!("");
/// # }
/// ```
#[inline]
#[cfg(feature = "write")]
pub fn write_with_options<'a, N: ToLexicalWithOptions, const FORMAT: u128>(
n: N,
bytes: &'a mut [u8],
options: &N::Options,
) -> &'a mut [u8] {
n.to_lexical_with_options::<FORMAT>(bytes, options)
}
/// Parse complete number from string.
///
/// This method parses the entire string, returning an error if
/// any invalid digits are found during parsing.
///
/// * `bytes` - Byte slice containing a numeric string.
///
/// # Example
///
/// ```
/// # pub fn main() {
/// #[cfg(feature = "parse-floats")] {
/// let string = "3.14159265359";
/// let result = lexical_core::parse::<f32>(string.as_bytes());
/// assert_eq!(result, Ok(3.14159265359_f32));
/// # }
/// # }
/// ```
#[inline]
#[cfg(feature = "parse")]
pub fn parse<N: FromLexical>(bytes: &[u8]) -> Result<N> {
N::from_lexical(bytes)
}
/// Parse partial number from string.
///
/// This method parses until an invalid digit is found (or the end
/// of the string), returning the number of processed digits
/// and the parsed value until that point.
///
/// * `bytes` - Byte slice containing a numeric string.
///
/// # Example
///
/// ```
/// # pub fn main() {
/// #[cfg(feature = "parse-floats")] {
/// let string = "3.14159265359 hello";
/// let result = lexical_core::parse_partial::<f32>(string.as_bytes());
/// assert_eq!(result, Ok((3.14159265359_f32, 13)));
/// # }
/// # }
/// ```
#[inline]
#[cfg(feature = "parse")]
pub fn parse_partial<N: FromLexical>(bytes: &[u8]) -> Result<(N, usize)> {
N::from_lexical_partial(bytes)
}
/// Parse complete number from string with custom parsing options.
///
/// This method parses the entire string, returning an error if
/// any invalid digits are found during parsing.
///
/// * `FORMAT` - Packed struct containing the number format.
/// * `bytes` - Byte slice containing a numeric string.
/// * `options` - Options to customize number parsing.
///
/// # Example
///
/// ```
/// # pub fn main() {
/// #[cfg(all(feature = "parse-floats", feature = "format"))] {
/// const JSON: u128 = lexical_core::format::JSON;
/// let options = lexical_core::ParseFloatOptions::new();
/// let string = "3.14159265359";
/// let result = lexical_core::parse_with_options::<f32, JSON>(string.as_bytes(), &options);
/// assert_eq!(result, Ok(3.14159265359_f32));
/// # }
/// # }
/// ```
#[inline]
#[cfg(feature = "parse")]
pub fn parse_with_options<N: FromLexicalWithOptions, const FORMAT: u128>(
bytes: &[u8],
options: &N::Options,
) -> Result<N> {
N::from_lexical_with_options::<FORMAT>(bytes, options)
}
/// Parse partial number from string with custom parsing options.
///
/// This method parses until an invalid digit is found (or the end
/// of the string), returning the number of processed digits
/// and the parsed value until that point.
///
/// * `FORMAT` - Packed struct containing the number format.
/// * `bytes` - Byte slice containing a numeric string.
/// * `options` - Options to customize number parsing.
///
/// # Example
///
/// ```
/// # pub fn main() {
/// #[cfg(all(feature = "parse-floats", feature = "format"))] {
/// const JSON: u128 = lexical_core::format::JSON;
/// let options = lexical_core::ParseFloatOptions::new();
/// let string = "3.14159265359 hello";
/// let result = lexical_core::parse_partial_with_options::<f32, JSON>(string.as_bytes(), &options);
/// assert_eq!(result, Ok((3.14159265359_f32, 13)));
/// # }
/// # }
/// ```
#[inline]
#[cfg(feature = "parse")]
pub fn parse_partial_with_options<N: FromLexicalWithOptions, const FORMAT: u128>(
bytes: &[u8],
options: &N::Options,
) -> Result<(N, usize)> {
N::from_lexical_partial_with_options::<FORMAT>(bytes, options)
}