1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
//! Specialized iterator traits.
//!
//! The traits are for iterables containing bytes, and provide optimizations
//! which then can be used for contiguous or non-contiguous iterables,
//! including containers or iterators of any kind.

#![cfg(feature = "parse")]

use core::mem;

// Re-export our digit iterators.
#[cfg(not(feature = "format"))]
pub use crate::noskip::{AsBytes, Bytes};
#[cfg(feature = "format")]
pub use crate::skip::{AsBytes, Bytes};

/// A trait for working with iterables of bytes.
///
/// These iterators can either be contiguous or not contiguous and provide
/// methods for reading data and accessing underlying data. The readers
/// can either be contiguous or non-contiguous, although performance and
/// some API methods may not be available for both.
///
/// # Safety
///
/// Safe if [`set_cursor`] is set to an index <= [`buffer_length`], so no
/// out-of-bounds reads can occur. Also, [`get_buffer`] must return a slice of
/// initialized bytes. The caller must also ensure that any calls that increment
/// the cursor, such as [`step_by_unchecked`], [`step_unchecked`], and
/// [`peek_many_unchecked`] never exceed [`buffer_length`] as well.
///
/// [`set_cursor`]: `Iter::set_cursor`
/// [`buffer_length`]: `Iter::buffer_length`
/// [`get_buffer`]: `Iter::get_buffer`
/// [`step_by_unchecked`]: `Iter::step_by_unchecked`
/// [`step_unchecked`]: `Iter::step_unchecked`
/// [`peek_many_unchecked`]: `Iter::peek_many_unchecked`
#[cfg(feature = "parse")]
pub unsafe trait Iter<'a> {
    /// Determine if the buffer is contiguous in memory.
    const IS_CONTIGUOUS: bool;

    // CURSORS
    // -------

    /// Get a ptr to the current start of the buffer.
    #[inline(always)]
    fn as_ptr(&self) -> *const u8 {
        self.as_slice().as_ptr()
    }

    /// Get a slice to the current start of the buffer.
    #[inline(always)]
    fn as_slice(&self) -> &'a [u8] {
        debug_assert!(self.cursor() <= self.buffer_length());
        // SAFETY: safe since index must be in range.
        unsafe { self.get_buffer().get_unchecked(self.cursor()..) }
    }

    /// Get a slice to the full underlying contiguous buffer,
    fn get_buffer(&self) -> &'a [u8];

    /// Get the total number of elements in the underlying buffer.
    #[inline(always)]
    fn buffer_length(&self) -> usize {
        self.get_buffer().len()
    }

    /// Get if no bytes are available in the buffer.
    ///
    /// This operators on the underlying buffer: that is,
    /// it returns if [`as_slice`] would return an empty slice.
    ///
    /// [as_slice]: Iter::as_slice
    #[inline(always)]
    fn is_buffer_empty(&self) -> bool {
        self.cursor() >= self.get_buffer().len()
    }

    /// Get the current index of the iterator in the slice.
    fn cursor(&self) -> usize;

    /// Set the current index of the iterator in the slice.
    ///
    /// This is **NOT** the current position of the iterator,
    /// since iterators may skip digits: this is the cursor
    /// in the underlying buffer. For example, if `slc[2]` is
    /// skipped, `set_cursor(3)` would be the 3rd element in
    /// the iterator, not the 4th.
    ///
    /// # Safety
    ///
    /// Safe if `index <= self.buffer_length()`. Although this
    /// won't affect safety, the caller also should be careful it
    /// does not set the cursor within skipped characters
    /// since this could affect correctness: an iterator that
    /// only accepts non-consecutive digit separators would
    /// pass if the cursor was set between the two.
    unsafe fn set_cursor(&mut self, index: usize);

    /// Get the current number of digits returned by the iterator.
    ///
    /// For contiguous iterators, this can include the sign character, decimal
    /// point, and the exponent sign (that is, it is always the cursor). For
    /// non-contiguous iterators, this must always be the only the number of
    /// digits returned.
    ///
    /// This is never used for indexing but will be used for API detection.
    fn current_count(&self) -> usize;

    // PROPERTIES

    /// Determine if the buffer is contiguous.
    #[inline(always)]
    fn is_contiguous(&self) -> bool {
        Self::IS_CONTIGUOUS
    }

    /// Get the next value available without consuming it.
    ///
    /// This does **NOT** skip digits, and directly fetches the item
    /// from the underlying buffer.
    #[inline(always)]
    fn first(&self) -> Option<&'a u8> {
        self.get_buffer().get(self.cursor())
    }

    /// Check if the next element is a given value.
    #[inline(always)]
    fn first_is_cased(&self, value: u8) -> bool {
        Some(&value) == self.first()
    }

    /// Check if the next element is a given value without case sensitivity.
    #[inline(always)]
    fn first_is_uncased(&self, value: u8) -> bool {
        if let Some(&c) = self.first() {
            c.to_ascii_lowercase() == value.to_ascii_lowercase()
        } else {
            false
        }
    }

    /// Check if the next item in buffer is a given value with optional case
    /// sensitivity.
    #[inline(always)]
    fn first_is(&self, value: u8, is_cased: bool) -> bool {
        if is_cased {
            self.first_is_cased(value)
        } else {
            self.first_is_uncased(value)
        }
    }

    // STEP BY
    // -------

    /// Advance the internal slice by `N` elements.
    ///
    /// This does not advance the iterator by `N` elements for
    /// non-contiguous iterators: this just advances the internal,
    /// underlying buffer. This is useful for multi-digit optimizations
    /// for contiguous iterators.
    ///
    /// This does not increment the count of items: returns: this only
    /// increments the index, not the total digits returned. You must use
    /// this carefully: if stepping over a digit, you must then call
    /// [`increment_count`] afterwards or else the internal count will
    /// be incorrect.
    ///
    /// [`increment_count`]: DigitsIter::increment_count
    ///
    /// # Panics
    ///
    /// This will panic if the buffer advances for non-contiguous
    /// iterators if the current byte is a digit separator, or if the
    /// count is more than 1.
    ///
    /// # Safety
    ///
    /// As long as the iterator is at least `N` elements, this
    /// is safe.
    unsafe fn step_by_unchecked(&mut self, count: usize);

    /// Advance the internal slice by 1 element.
    ///
    ///
    /// This does not increment the count of items: returns: this only
    /// increments the index, not the total digits returned. You must
    /// use this carefully: if stepping over a digit, you must then call
    /// [`increment_count`] afterwards or else the internal count will
    /// be incorrect.
    ///
    /// [`increment_count`]: DigitsIter::increment_count
    ///
    /// # Panics
    ///
    /// This will panic if the buffer advances for non-contiguous
    /// iterators if the current byte is a digit separator.
    ///
    /// # Safety
    ///
    /// Safe as long as the iterator is not empty.
    #[inline(always)]
    unsafe fn step_unchecked(&mut self) {
        debug_assert!(!self.as_slice().is_empty());
        // SAFETY: safe if `self.index < self.buffer_length()`.
        unsafe { self.step_by_unchecked(1) };
    }

    // READ
    // ----

    /// Read a value of a difference type from the iterator.
    ///
    /// This does **not** advance the internal state of the iterator.
    /// This can only be implemented for contiguous iterators: non-
    /// contiguous iterators **MUST** panic.
    ///
    /// # Panics
    ///
    /// If the iterator is a non-contiguous iterator.
    ///
    /// # Safety
    ///
    /// Safe as long as the number of the buffer is contains as least as
    /// many bytes as the size of V. This must be unimplemented for
    /// non-contiguous iterators.
    #[inline(always)]
    unsafe fn peek_many_unchecked<V>(&self) -> V {
        unimplemented!();
    }

    /// Try to read a the next four bytes as a u32.
    ///
    /// This does not advance the internal state of the iterator.
    #[inline(always)]
    fn peek_u32(&self) -> Option<u32> {
        if Self::IS_CONTIGUOUS && self.as_slice().len() >= mem::size_of::<u32>() {
            // SAFETY: safe since we've guaranteed the buffer is greater than
            // the number of elements read. u32 is valid for all bit patterns
            unsafe { Some(self.peek_many_unchecked()) }
        } else {
            None
        }
    }

    /// Try to read the next eight bytes as a u64.
    ///
    /// This does not advance the internal state of the iterator.
    #[inline(always)]
    fn peek_u64(&self) -> Option<u64> {
        if Self::IS_CONTIGUOUS && self.as_slice().len() >= mem::size_of::<u64>() {
            // SAFETY: safe since we've guaranteed the buffer is greater than
            // the number of elements read. u64 is valid for all bit patterns
            unsafe { Some(self.peek_many_unchecked()) }
        } else {
            None
        }
    }
}

/// Iterator over a contiguous block of bytes.
///
/// This allows us to convert to-and-from-slices, raw pointers, and
/// peek/query the data from either end cheaply.
///
/// A default implementation is provided for slice iterators.
/// This trait **should never** return `null` from `as_ptr`, or be
/// implemented for non-contiguous data.
pub trait DigitsIter<'a>: Iterator<Item = &'a u8> + Iter<'a> {
    /// Get if the iterator cannot return any more elements.
    ///
    /// This may advance the internal iterator state, but not
    /// modify the next returned value.
    ///
    /// If this is an iterator, this is based on the number of items
    /// left to be returned. We do not necessarly know the length of
    /// the buffer. If this is a non-contiguous iterator, this **MUST**
    /// advance the state until it knows a value can be returned.
    ///
    /// Any incorrect implementations of this affect all safety invariants
    /// for the rest of the trait. For contiguous iterators, this can be
    /// as simple as checking if `self.cursor >= self.slc.len()`, but for
    /// non-contiguous iterators you **MUST** advance to the next element
    /// to be returned, then check to see if a value exists. The safest
    /// implementation is always to check if `self.peek().is_none()` and
    /// ensure [`peek`] is always safe.
    ///
    /// If you would like to see if the cursor is at the end of the buffer,
    /// see [`is_buffer_empty`] instead.
    ///
    /// [is_buffer_empty]: Iter::is_buffer_empty
    /// [peek]: DigitsIter::peek
    #[inline(always)]
    #[allow(clippy::wrong_self_convention)] // reason="required for peeking next item"
    fn is_consumed(&mut self) -> bool {
        self.peek().is_none()
    }

    /// Increment the number of digits that have been returned by the iterator.
    ///
    /// For contiguous iterators, this is a no-op. For non-contiguous iterators,
    /// this increments the count by 1.
    fn increment_count(&mut self);

    /// Peek the next value of the iterator, without consuming it.
    ///
    /// Note that this can modify the internal state, by skipping digits
    /// for iterators that find the first non-zero value, etc. We optimize
    /// this for the case where we have contiguous iterators, since
    /// non-contiguous iterators already have a major performance penalty.
    fn peek(&mut self) -> Option<Self::Item>;

    /// Peek the next value of the iterator, and step only if it exists.
    #[inline(always)]
    fn try_read(&mut self) -> Option<Self::Item> {
        if let Some(value) = self.peek() {
            // SAFETY: the slice cannot be empty because we peeked a value.
            unsafe { self.step_unchecked() };
            Some(value)
        } else {
            None
        }
    }

    /// Check if the next element is a given value.
    #[inline(always)]
    fn peek_is_cased(&mut self, value: u8) -> bool {
        Some(&value) == self.peek()
    }

    /// Check if the next element is a given value without case sensitivity.
    #[inline(always)]
    fn peek_is_uncased(&mut self, value: u8) -> bool {
        if let Some(&c) = self.peek() {
            c.to_ascii_lowercase() == value.to_ascii_lowercase()
        } else {
            false
        }
    }

    /// Check if the next element is a given value with optional case
    /// sensitivity.
    #[inline(always)]
    fn peek_is(&mut self, value: u8, is_cased: bool) -> bool {
        if is_cased {
            self.peek_is_cased(value)
        } else {
            self.peek_is_uncased(value)
        }
    }

    /// Peek the next value and consume it if the read value matches the
    /// expected one.
    #[inline(always)]
    fn read_if<Pred: FnOnce(u8) -> bool>(&mut self, pred: Pred) -> Option<u8> {
        // NOTE: This was implemented to remove usage of unsafe throughout to code
        // base, however, performance was really not up to scratch. I'm not sure
        // the cause of this.
        if let Some(&peeked) = self.peek() {
            if pred(peeked) {
                // SAFETY: the slice cannot be empty because we peeked a value.
                unsafe { self.step_unchecked() };
                Some(peeked)
            } else {
                None
            }
        } else {
            None
        }
    }

    /// Read a value if the value matches the provided one.
    #[inline(always)]
    fn read_if_value_cased(&mut self, value: u8) -> Option<u8> {
        if self.peek() == Some(&value) {
            // SAFETY: the slice cannot be empty because we peeked a value.
            unsafe { self.step_unchecked() };
            Some(value)
        } else {
            None
        }
    }

    /// Read a value if the value matches the provided one without case
    /// sensitivity.
    #[inline(always)]
    fn read_if_value_uncased(&mut self, value: u8) -> Option<u8> {
        self.read_if(|x| x.to_ascii_lowercase() == value.to_ascii_lowercase())
    }

    /// Read a value if the value matches the provided one.
    #[inline(always)]
    fn read_if_value(&mut self, value: u8, is_cased: bool) -> Option<u8> {
        if is_cased {
            self.read_if_value_cased(value)
        } else {
            self.read_if_value_uncased(value)
        }
    }

    /// Skip zeros from the start of the iterator
    #[inline(always)]
    fn skip_zeros(&mut self) -> usize {
        let start = self.current_count();
        while self.read_if_value_cased(b'0').is_some() {
            self.increment_count();
        }
        self.current_count() - start
    }

    /// Determine if the character is a digit.
    fn is_digit(&self, value: u8) -> bool;
}