lexical_util/iterator.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
//! Specialized iterator traits.
//!
//! The traits are for iterables containing bytes, and provide optimizations
//! which then can be used for contiguous or non-contiguous iterables,
//! including containers or iterators of any kind.
#![cfg(feature = "parse")]
use core::mem;
// Re-export our digit iterators.
#[cfg(not(feature = "format"))]
pub use crate::noskip::{AsBytes, Bytes};
#[cfg(feature = "format")]
pub use crate::skip::{AsBytes, Bytes};
/// A trait for working with iterables of bytes.
///
/// These iterators can either be contiguous or not contiguous and provide
/// methods for reading data and accessing underlying data. The readers
/// can either be contiguous or non-contiguous, although performance and
/// some API methods may not be available for both.
///
/// # Safety
///
/// Safe if [`set_cursor`] is set to an index <= [`buffer_length`], so no
/// out-of-bounds reads can occur. Also, [`get_buffer`] must return a slice of
/// initialized bytes. The caller must also ensure that any calls that increment
/// the cursor, such as [`step_by_unchecked`], [`step_unchecked`], and
/// [`peek_many_unchecked`] never exceed [`buffer_length`] as well.
///
/// [`set_cursor`]: `Iter::set_cursor`
/// [`buffer_length`]: `Iter::buffer_length`
/// [`get_buffer`]: `Iter::get_buffer`
/// [`step_by_unchecked`]: `Iter::step_by_unchecked`
/// [`step_unchecked`]: `Iter::step_unchecked`
/// [`peek_many_unchecked`]: `Iter::peek_many_unchecked`
#[cfg(feature = "parse")]
pub unsafe trait Iter<'a> {
/// Determine if the buffer is contiguous in memory.
const IS_CONTIGUOUS: bool;
// CURSORS
// -------
/// Get a ptr to the current start of the buffer.
#[inline(always)]
fn as_ptr(&self) -> *const u8 {
self.as_slice().as_ptr()
}
/// Get a slice to the current start of the buffer.
#[inline(always)]
fn as_slice(&self) -> &'a [u8] {
debug_assert!(self.cursor() <= self.buffer_length());
// SAFETY: safe since index must be in range.
unsafe { self.get_buffer().get_unchecked(self.cursor()..) }
}
/// Get a slice to the full underlying contiguous buffer,
fn get_buffer(&self) -> &'a [u8];
/// Get the total number of elements in the underlying buffer.
#[inline(always)]
fn buffer_length(&self) -> usize {
self.get_buffer().len()
}
/// Get if no bytes are available in the buffer.
///
/// This operators on the underlying buffer: that is,
/// it returns if [`as_slice`] would return an empty slice.
///
/// [as_slice]: Iter::as_slice
#[inline(always)]
fn is_buffer_empty(&self) -> bool {
self.cursor() >= self.get_buffer().len()
}
/// Get the current index of the iterator in the slice.
fn cursor(&self) -> usize;
/// Set the current index of the iterator in the slice.
///
/// This is **NOT** the current position of the iterator,
/// since iterators may skip digits: this is the cursor
/// in the underlying buffer. For example, if `slc[2]` is
/// skipped, `set_cursor(3)` would be the 3rd element in
/// the iterator, not the 4th.
///
/// # Safety
///
/// Safe if `index <= self.buffer_length()`. Although this
/// won't affect safety, the caller also should be careful it
/// does not set the cursor within skipped characters
/// since this could affect correctness: an iterator that
/// only accepts non-consecutive digit separators would
/// pass if the cursor was set between the two.
unsafe fn set_cursor(&mut self, index: usize);
/// Get the current number of digits returned by the iterator.
///
/// For contiguous iterators, this can include the sign character, decimal
/// point, and the exponent sign (that is, it is always the cursor). For
/// non-contiguous iterators, this must always be the only the number of
/// digits returned.
///
/// This is never used for indexing but will be used for API detection.
fn current_count(&self) -> usize;
// PROPERTIES
/// Determine if the buffer is contiguous.
#[inline(always)]
fn is_contiguous(&self) -> bool {
Self::IS_CONTIGUOUS
}
/// Get the next value available without consuming it.
///
/// This does **NOT** skip digits, and directly fetches the item
/// from the underlying buffer.
#[inline(always)]
fn first(&self) -> Option<&'a u8> {
self.get_buffer().get(self.cursor())
}
/// Check if the next element is a given value.
#[inline(always)]
fn first_is_cased(&self, value: u8) -> bool {
Some(&value) == self.first()
}
/// Check if the next element is a given value without case sensitivity.
#[inline(always)]
fn first_is_uncased(&self, value: u8) -> bool {
if let Some(&c) = self.first() {
c.eq_ignore_ascii_case(&value)
} else {
false
}
}
/// Check if the next item in buffer is a given value with optional case
/// sensitivity.
#[inline(always)]
fn first_is(&self, value: u8, is_cased: bool) -> bool {
if is_cased {
self.first_is_cased(value)
} else {
self.first_is_uncased(value)
}
}
// STEP BY
// -------
/// Advance the internal slice by `N` elements.
///
/// This does not advance the iterator by `N` elements for
/// non-contiguous iterators: this just advances the internal,
/// underlying buffer. This is useful for multi-digit optimizations
/// for contiguous iterators.
///
/// This does not increment the count of items: returns: this only
/// increments the index, not the total digits returned. You must use
/// this carefully: if stepping over a digit, you must then call
/// [`increment_count`] afterwards or else the internal count will
/// be incorrect.
///
/// [`increment_count`]: DigitsIter::increment_count
///
/// # Panics
///
/// This will panic if the buffer advances for non-contiguous
/// iterators if the current byte is a digit separator, or if the
/// count is more than 1.
///
/// # Safety
///
/// As long as the iterator is at least `N` elements, this
/// is safe.
unsafe fn step_by_unchecked(&mut self, count: usize);
/// Advance the internal slice by 1 element.
///
///
/// This does not increment the count of items: returns: this only
/// increments the index, not the total digits returned. You must
/// use this carefully: if stepping over a digit, you must then call
/// [`increment_count`] afterwards or else the internal count will
/// be incorrect.
///
/// [`increment_count`]: DigitsIter::increment_count
///
/// # Panics
///
/// This will panic if the buffer advances for non-contiguous
/// iterators if the current byte is a digit separator.
///
/// # Safety
///
/// Safe as long as the iterator is not empty.
#[inline(always)]
unsafe fn step_unchecked(&mut self) {
debug_assert!(!self.as_slice().is_empty());
// SAFETY: safe if `self.index < self.buffer_length()`.
unsafe { self.step_by_unchecked(1) };
}
// READ
// ----
/// Read a value of a difference type from the iterator.
///
/// This does **not** advance the internal state of the iterator.
/// This can only be implemented for contiguous iterators: non-
/// contiguous iterators **MUST** panic.
///
/// # Panics
///
/// If the iterator is a non-contiguous iterator.
///
/// # Safety
///
/// Safe as long as the number of the buffer is contains as least as
/// many bytes as the size of V. This must be unimplemented for
/// non-contiguous iterators.
#[inline(always)]
unsafe fn peek_many_unchecked<V>(&self) -> V {
unimplemented!();
}
/// Try to read a the next four bytes as a u32.
///
/// This does not advance the internal state of the iterator.
#[inline(always)]
fn peek_u32(&self) -> Option<u32> {
if Self::IS_CONTIGUOUS && self.as_slice().len() >= mem::size_of::<u32>() {
// SAFETY: safe since we've guaranteed the buffer is greater than
// the number of elements read. u32 is valid for all bit patterns
unsafe { Some(self.peek_many_unchecked()) }
} else {
None
}
}
/// Try to read the next eight bytes as a u64.
///
/// This does not advance the internal state of the iterator.
#[inline(always)]
fn peek_u64(&self) -> Option<u64> {
if Self::IS_CONTIGUOUS && self.as_slice().len() >= mem::size_of::<u64>() {
// SAFETY: safe since we've guaranteed the buffer is greater than
// the number of elements read. u64 is valid for all bit patterns
unsafe { Some(self.peek_many_unchecked()) }
} else {
None
}
}
}
/// Iterator over a contiguous block of bytes.
///
/// This allows us to convert to-and-from-slices, raw pointers, and
/// peek/query the data from either end cheaply.
///
/// A default implementation is provided for slice iterators.
/// This trait **should never** return `null` from `as_ptr`, or be
/// implemented for non-contiguous data.
pub trait DigitsIter<'a>: Iterator<Item = &'a u8> + Iter<'a> {
/// Get if the iterator cannot return any more elements.
///
/// This may advance the internal iterator state, but not
/// modify the next returned value.
///
/// If this is an iterator, this is based on the number of items
/// left to be returned. We do not necessarly know the length of
/// the buffer. If this is a non-contiguous iterator, this **MUST**
/// advance the state until it knows a value can be returned.
///
/// Any incorrect implementations of this affect all safety invariants
/// for the rest of the trait. For contiguous iterators, this can be
/// as simple as checking if `self.cursor >= self.slc.len()`, but for
/// non-contiguous iterators you **MUST** advance to the next element
/// to be returned, then check to see if a value exists. The safest
/// implementation is always to check if `self.peek().is_none()` and
/// ensure [`peek`] is always safe.
///
/// If you would like to see if the cursor is at the end of the buffer,
/// see [`is_buffer_empty`] instead.
///
/// [is_buffer_empty]: Iter::is_buffer_empty
/// [peek]: DigitsIter::peek
#[inline(always)]
#[allow(clippy::wrong_self_convention)] // reason="required for peeking next item"
fn is_consumed(&mut self) -> bool {
self.peek().is_none()
}
/// Increment the number of digits that have been returned by the iterator.
///
/// For contiguous iterators, this is a no-op. For non-contiguous iterators,
/// this increments the count by 1.
fn increment_count(&mut self);
/// Peek the next value of the iterator, without consuming it.
///
/// Note that this can modify the internal state, by skipping digits
/// for iterators that find the first non-zero value, etc. We optimize
/// this for the case where we have contiguous iterators, since
/// non-contiguous iterators already have a major performance penalty.
fn peek(&mut self) -> Option<Self::Item>;
/// Peek the next value of the iterator, and step only if it exists.
#[inline(always)]
fn try_read(&mut self) -> Option<Self::Item> {
if let Some(value) = self.peek() {
// SAFETY: the slice cannot be empty because we peeked a value.
unsafe { self.step_unchecked() };
Some(value)
} else {
None
}
}
/// Check if the next element is a given value.
#[inline(always)]
fn peek_is_cased(&mut self, value: u8) -> bool {
Some(&value) == self.peek()
}
/// Check if the next element is a given value without case sensitivity.
#[inline(always)]
fn peek_is_uncased(&mut self, value: u8) -> bool {
if let Some(&c) = self.peek() {
c.eq_ignore_ascii_case(&value)
} else {
false
}
}
/// Check if the next element is a given value with optional case
/// sensitivity.
#[inline(always)]
fn peek_is(&mut self, value: u8, is_cased: bool) -> bool {
if is_cased {
self.peek_is_cased(value)
} else {
self.peek_is_uncased(value)
}
}
/// Peek the next value and consume it if the read value matches the
/// expected one.
#[inline(always)]
fn read_if<Pred: FnOnce(u8) -> bool>(&mut self, pred: Pred) -> Option<u8> {
// NOTE: This was implemented to remove usage of unsafe throughout to code
// base, however, performance was really not up to scratch. I'm not sure
// the cause of this.
if let Some(&peeked) = self.peek() {
if pred(peeked) {
// SAFETY: the slice cannot be empty because we peeked a value.
unsafe { self.step_unchecked() };
Some(peeked)
} else {
None
}
} else {
None
}
}
/// Read a value if the value matches the provided one.
#[inline(always)]
fn read_if_value_cased(&mut self, value: u8) -> Option<u8> {
if self.peek() == Some(&value) {
// SAFETY: the slice cannot be empty because we peeked a value.
unsafe { self.step_unchecked() };
Some(value)
} else {
None
}
}
/// Read a value if the value matches the provided one without case
/// sensitivity.
#[inline(always)]
fn read_if_value_uncased(&mut self, value: u8) -> Option<u8> {
self.read_if(|x| x.eq_ignore_ascii_case(&value))
}
/// Read a value if the value matches the provided one.
#[inline(always)]
fn read_if_value(&mut self, value: u8, is_cased: bool) -> Option<u8> {
if is_cased {
self.read_if_value_cased(value)
} else {
self.read_if_value_uncased(value)
}
}
/// Skip zeros from the start of the iterator
#[inline(always)]
fn skip_zeros(&mut self) -> usize {
let start = self.current_count();
while self.read_if_value_cased(b'0').is_some() {
self.increment_count();
}
self.current_count() - start
}
/// Determine if the character is a digit.
fn is_digit(&self, value: u8) -> bool;
}