1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
//! Radix-generic, optimized, integer-to-string conversion routines.
//!
//! These routines are highly optimized: they unroll 4 loops at a time,
//! using pre-computed base^2 tables.
//!
//! See [Algorithm.md](/docs/Algorithm.md) for a more detailed description of
//! the algorithm choice here. See [Benchmarks.md](/docs/Benchmarks.md) for
//! recent benchmark data.
#![cfg(not(feature = "compact"))]
use lexical_util::assert::debug_assert_radix;
use lexical_util::digit::digit_to_char;
use lexical_util::div128::u128_divrem;
use lexical_util::format::{radix_from_flags, NumberFormat};
use lexical_util::num::{AsCast, UnsignedInteger};
use lexical_util::step::u64_step;
/// Write 2 digits to buffer.
///
/// # Safety
///
/// Safe if `bytes` is large enough to hold 2 characters, `index >= 2`,
/// and if the 2 * remainder, or `r`, has it so `r + 1 < table.len()`.
macro_rules! write_digits {
($bytes:ident, $index:ident, $table:ident, $r:ident) => {{
debug_assert!($index >= 2);
debug_assert!($bytes.len() >= 2);
debug_assert!($r + 1 < $table.len());
$index -= 1;
unsafe { index_unchecked_mut!($bytes[$index] = $table[$r + 1]) };
$index -= 1;
unsafe { index_unchecked_mut!($bytes[$index] = $table[$r]) };
}};
}
/// Write 1 digit to buffer.
///
/// # Safety
///
/// Safe if `bytes` is large enough to hold 1 characters, and `r < 36`.
/// Adding in direct safety checks here destroys performance, often by
/// 30%+ so it's up to the caller to beware.
macro_rules! write_digit {
($bytes:ident, $index:ident, $r:ident) => {{
debug_assert!($index >= 1);
debug_assert!($bytes.len() >= 1);
debug_assert!($r < 36);
$index -= 1;
unsafe { index_unchecked_mut!($bytes[$index]) = digit_to_char($r) };
}};
}
// NOTE: Don't use too many generics:
// We don't need generics for most of the internal algorithms,
// and doing so kills performance. Why? I don't know, but assuming
// it messed with the compiler's code generation.
/// Write integral digits to buffer.
///
/// This algorithm first writes 4, then 2 digits at a time, finally
/// the last 1 or 2 digits, using power reduction to speed up the
/// algorithm a lot.
///
/// # Safety
///
/// This is safe as long as the buffer is large enough to hold `T::MAX`
/// digits in radix `N` and the index >= digit count. Note that making
/// small changes here can destroy performance, so it's crucial we do this
/// correctly.
///
/// If `buffer.len() >= T::DIGITS` and `index >= T::DIGITS`, then this is
/// safe. We first carve off 4 digits off the end, similar to the algorithm
/// in compact, then 2 at a time, then 1, index will never wrap under 0.
/// Since we validate the table size and radix inside, this is the only
/// safety precondition that must be held up.
///
/// See [algorithm] and the [crate] documentation for more detailed
/// information on the safety considerations.
#[inline(always)]
unsafe fn write_digits<T: UnsignedInteger>(
mut value: T,
radix: u32,
table: &[u8],
buffer: &mut [u8],
mut index: usize,
count: usize,
) -> usize {
debug_assert_radix(radix);
debug_assert!(buffer.len() >= count, "buffer must at least be as the digit count");
// Pre-compute our powers of radix.
let radix = T::from_u32(radix);
let radix2 = radix * radix;
let radix4 = radix2 * radix2;
// SAFETY: All of these are safe for the buffer writes as long as
// the buffer is large enough to hold `T::MAX` digits in radix `N`.
// We confirm (which will be compiled out) that the table cannot
// overflow since it's the indexing is `0..radix^2 * 2`.
assert!(radix <= T::from_u32(36), "radix must be <= 36");
assert!(table.len() >= radix2.as_usize() * 2, "table must be 2 * radix^2 long");
// Decode 4 digits at a time.
while value >= radix4 {
let r = value % radix4;
value /= radix4;
let r1 = usize::as_cast(T::TWO * (r / radix2));
let r2 = usize::as_cast(T::TWO * (r % radix2));
// SAFETY: This is always safe, since the table is 2*radix^2, and
// r1 and r2 must be in the range [0, 2*radix^2-1), since the maximum
// value of r is `radix4-1`, which must have a div and r
// in the range [0, radix^2-1).
write_digits!(buffer, index, table, r2);
write_digits!(buffer, index, table, r1);
}
// Decode 2 digits at a time.
while value >= radix2 {
let r = usize::as_cast(T::TWO * (value % radix2));
value /= radix2;
// SAFETY: this is always safe, since the table is 2*radix^2, and
// r must be in the range [0, 2*radix^2-1).
write_digits!(buffer, index, table, r);
}
// Decode last 2 digits.
if value < radix {
let r = u32::as_cast(value);
// SAFETY: this is always safe, since value < radix, so it must be < 36.
write_digit!(buffer, index, r);
} else {
let r = usize::as_cast(T::TWO * value);
// SAFETY: this is always safe, since the table is 2*radix^2, and
// the value must <= radix^2, so rem must be in the range
// [0, 2*radix^2-1).
write_digits!(buffer, index, table, r);
}
index
}
/// Specialized digits writer for u128, since it writes at least step digits.
///
/// # Safety
///
/// This is safe as long as the buffer is large enough to hold `T::MAX`
/// digits in radix `N`. See [algorithm] for more safety considerations.
#[inline(always)]
unsafe fn write_step_digits<T: UnsignedInteger>(
value: T,
radix: u32,
table: &[u8],
buffer: &mut [u8],
index: usize,
step: usize,
count: usize,
) -> usize {
debug_assert_radix(radix);
let start = index;
// SAFETY: safe as long as the call to write_step_digits is safe.
let index = unsafe { write_digits(value, radix, table, buffer, index, count) };
// Write the remaining 0 bytes.
let end = start.saturating_sub(step);
// SAFETY: this is always safe since `end < index && index < start`.
let zeros = unsafe { &mut index_unchecked_mut!(buffer[end..index]) };
zeros.fill(b'0');
end
}
/// Optimized implementation for radix-N numbers.
///
/// # Safety
///
/// Safe as long as the buffer is large enough to hold as many digits
/// that can be in the largest value of `T`, in radix `N`. For decimal
/// values, it's supposed to be exactly [`digit_count`] to avoid copies,
/// since we write from the end to the front.
///
/// See the crate [`crate`] documentation for more security considerations.
///
/// [`digit_count`]: `crate::decimal::DigitCount`
#[inline(always)]
pub fn algorithm<T>(value: T, radix: u32, table: &[u8], buffer: &mut [u8], count: usize) -> usize
where
T: UnsignedInteger,
{
// This is so that radix^4 does not overflow, since 36^4 overflows a u16.
assert!(T::BITS >= 32, "Must have at least 32 bits in the input.");
assert!(radix <= 36, "radix must be <= 36");
assert!(table.len() >= (radix * radix * 2) as usize, "table must be 2 * radix^2 long");
assert!(count <= buffer.len());
let buffer = &mut buffer[..count];
// SAFETY: Both forms of unchecked indexing cannot overflow.
// The table always has 2*radix^2 elements, so it must be a legal index.
// The buffer is ensured to have at least `FORMATTED_SIZE` or
// `FORMATTED_SIZE_DECIMAL` characters, which is the maximum number of
// digits an integer of that size may write.
unsafe { write_digits(value, radix, table, buffer, buffer.len(), count) }
}
/// Optimized implementation for radix-N 128-bit numbers.
///
/// # Safety
///
/// Safe as long as the buffer is large enough to hold as many digits
/// that can be in the largest value of `T`, in radix `N`. For decimal
/// values, it's supposed to be exactly [`digit_count`] to avoid copies,
/// since we write from the end to the front.
///
/// See the crate [`crate`] documentation for more security considerations.
///
/// [`digit_count`]: `crate::decimal::DigitCount`
#[inline(always)]
pub fn algorithm_u128<const FORMAT: u128, const MASK: u128, const SHIFT: i32>(
value: u128,
table: &[u8],
buffer: &mut [u8],
count: usize,
) -> usize {
// NOTE: Use the const version of radix for u64_step and
// u128_divrem to ensure they're evaluated at compile time.
assert!(NumberFormat::<{ FORMAT }> {}.is_valid());
assert!(count <= buffer.len());
let buffer = &mut buffer[..count];
// Quick approximations to make the algorithm **a lot** faster.
// If the value can be represented in a 64-bit integer, we can
// do this as a native integer.
let radix = radix_from_flags(FORMAT, MASK, SHIFT);
assert!(radix <= 36, "radix must be <= 36");
assert!(table.len() >= (radix * radix * 2) as usize, "table must be 2 * radix^2 long");
if value <= u64::MAX as u128 {
// SAFETY: safe if the buffer is large enough to hold the significant digits.
return unsafe { algorithm(value as u64, radix, table, buffer, count) };
}
// LOGIC: Both forms of unchecked indexing cannot overflow.
// The table always has 2*radix^2 elements, so it must be a legal index.
// The buffer is ensured to have at least `FORMATTED_SIZE` or
// `FORMATTED_SIZE_DECIMAL` characters, which is the maximum number of
// digits an integer of that size may write.
// We use a fast 128-bit division algorithm, described in depth
// in lexical_util/div128.
// Decode 4-digits at a time.
// To deal with internal 0 values or values with internal 0 digits set,
// we store the starting index, and if not all digits are written,
// we just skip down `digits` digits for the next value.
let step = u64_step(radix_from_flags(FORMAT, MASK, SHIFT));
let (value, low) = u128_divrem(value, radix_from_flags(FORMAT, MASK, SHIFT));
let mut index = buffer.len();
index = unsafe { write_step_digits(low, radix, table, buffer, index, step, count) };
if value <= u64::MAX as u128 {
unsafe { write_digits(value as u64, radix, table, buffer, index, count) };
return count;
}
// Value has to be greater than 1.8e38
let (value, mid) = u128_divrem(value, radix_from_flags(FORMAT, MASK, SHIFT));
index = unsafe { write_step_digits(mid, radix, table, buffer, index, step, count) };
if index != 0 {
index = unsafe { write_digits(value as u64, radix, table, buffer, index, count) };
}
index
}