libbpf_rs/
util.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
use std::ffi::CStr;
use std::ffi::CString;
use std::fs;
use std::mem::transmute;
use std::ops::Deref;
use std::os::fd::AsRawFd;
use std::os::fd::BorrowedFd;
use std::os::raw::c_char;
use std::path::Path;
use std::ptr::NonNull;
use std::sync::OnceLock;

use crate::error::IntoError;
use crate::Error;
use crate::Result;

pub fn str_to_cstring(s: &str) -> Result<CString> {
    CString::new(s).map_err(|e| Error::with_invalid_data(e.to_string()))
}

pub fn path_to_cstring<P: AsRef<Path>>(path: P) -> Result<CString> {
    let path_str = path.as_ref().to_str().ok_or_else(|| {
        Error::with_invalid_data(format!("{} is not valid unicode", path.as_ref().display()))
    })?;

    str_to_cstring(path_str)
}

pub fn c_ptr_to_string(p: *const c_char) -> Result<String> {
    if p.is_null() {
        return Err(Error::with_invalid_data("Null string"));
    }

    let c_str = unsafe { CStr::from_ptr(p) };
    Ok(c_str
        .to_str()
        .map_err(|e| Error::with_invalid_data(e.to_string()))?
        .to_owned())
}

/// Convert a `[c_char]` into a `CStr`.
pub fn c_char_slice_to_cstr(s: &[c_char]) -> Option<&CStr> {
    // TODO: Switch to using `CStr::from_bytes_until_nul` once we require
    //       Rust 1.69.0.
    let nul_idx = s
        .iter()
        .enumerate()
        .find_map(|(idx, b)| (*b == 0).then_some(idx))?;
    let cstr =
        // SAFETY: `c_char` and `u8` are both just one byte plain old data
        //         types.
        CStr::from_bytes_with_nul(unsafe { transmute::<&[c_char], &[u8]>(&s[0..=nul_idx]) })
            .unwrap();
    Some(cstr)
}

/// Round up a number to the next multiple of `r`
pub fn roundup(num: usize, r: usize) -> usize {
    ((num + (r - 1)) / r) * r
}

/// Get the number of CPUs in the system, e.g., to interact with per-cpu maps.
pub fn num_possible_cpus() -> Result<usize> {
    let ret = unsafe { libbpf_sys::libbpf_num_possible_cpus() };
    parse_ret(ret).map(|()| ret as usize)
}

pub fn parse_ret(ret: i32) -> Result<()> {
    if ret < 0 {
        // Error code is returned negative, flip to positive to match errno
        Err(Error::from_raw_os_error(-ret))
    } else {
        Ok(())
    }
}

pub fn parse_ret_i32(ret: i32) -> Result<i32> {
    parse_ret(ret).map(|()| ret)
}


/// Check the returned pointer of a `libbpf` call, extracting any
/// reported errors and converting them.
pub fn validate_bpf_ret<T>(ptr: *mut T) -> Result<NonNull<T>> {
    // SAFETY: `libbpf_get_error` is always safe to call.
    match unsafe { libbpf_sys::libbpf_get_error(ptr as *const _) } {
        0 => {
            debug_assert!(!ptr.is_null());
            // SAFETY: libbpf guarantees that if NULL is returned an
            //         error it set, so we will always end up with a
            //         valid pointer when `libbpf_get_error` returned 0.
            let ptr = unsafe { NonNull::new_unchecked(ptr) };
            Ok(ptr)
        }
        err => Err(Error::from_raw_os_error(-err as i32)),
    }
}

/// An enum describing type of eBPF object.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum BpfObjectType {
    /// The object is a map.
    Map,
    /// The object is a program.
    Program,
    /// The object is a BPF link.
    Link,
}

/// Get type of BPF object by fd.
///
/// This information is not exported directly by bpf_*_get_info_by_fd() functions,
/// as kernel relies on the userspace code to know what kind of object it
/// queries. The type of object can be recovered by fd only from the proc
/// filesystem. The same approach is used in bpftool.
pub fn object_type_from_fd(fd: BorrowedFd<'_>) -> Result<BpfObjectType> {
    let fd_link = format!("/proc/self/fd/{}", fd.as_raw_fd());
    let link_type = fs::read_link(fd_link)
        .map_err(|e| Error::with_invalid_data(format!("can't read fd link: {}", e)))?;
    let link_type = link_type
        .to_str()
        .ok_or_invalid_data(|| "can't convert PathBuf to str")?;

    match link_type {
        "anon_inode:bpf-link" => Ok(BpfObjectType::Link),
        "anon_inode:bpf-map" => Ok(BpfObjectType::Map),
        "anon_inode:bpf-prog" => Ok(BpfObjectType::Program),
        other => Err(Error::with_invalid_data(format!(
            "unknown type of BPF fd: {other}"
        ))),
    }
}

// Fix me, If std::sync::LazyLock is stable(https://github.com/rust-lang/rust/issues/109736).
pub(crate) struct LazyLock<T> {
    cell: OnceLock<T>,
    init: fn() -> T,
}

impl<T> LazyLock<T> {
    pub const fn new(f: fn() -> T) -> Self {
        Self {
            cell: OnceLock::new(),
            init: f,
        }
    }
}

impl<T> Deref for LazyLock<T> {
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        self.cell.get_or_init(self.init)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use std::io;
    use std::os::fd::AsFd;

    use tempfile::NamedTempFile;


    #[test]
    fn test_roundup() {
        for i in 1..=256 {
            let up = roundup(i, 8);
            assert!(up % 8 == 0);
            assert!(i <= up);
            assert!(up - i < 8);
        }
    }

    #[test]
    fn test_roundup_multiples() {
        for i in (8..=256).step_by(8) {
            assert_eq!(roundup(i, 8), i);
        }
    }

    #[test]
    fn test_num_possible_cpus() {
        let num = num_possible_cpus().unwrap();
        assert!(num > 0);
    }

    /// Check that we can convert a `[c_char]` into a `CStr`.
    #[test]
    fn c_char_slice_conversion() {
        let slice = [];
        assert_eq!(c_char_slice_to_cstr(&slice), None);

        let slice = [0];
        assert_eq!(
            c_char_slice_to_cstr(&slice).unwrap(),
            CStr::from_bytes_with_nul(b"\0").unwrap()
        );

        let slice = ['a' as _, 'b' as _, 'c' as _, 0 as _];
        assert_eq!(
            c_char_slice_to_cstr(&slice).unwrap(),
            CStr::from_bytes_with_nul(b"abc\0").unwrap()
        );

        // Missing terminating NUL byte.
        let slice = ['a' as _, 'b' as _, 'c' as _];
        assert_eq!(c_char_slice_to_cstr(&slice), None);
    }

    /// Check that object_type_from_fd() doesn't allow descriptors of usual
    /// files to be used. Testing with BPF objects requires BPF to be
    /// loaded.
    #[test]
    fn test_object_type_from_fd_with_unexpected_fds() {
        let not_object = NamedTempFile::new().unwrap();

        let _ = object_type_from_fd(not_object.as_fd())
            .expect_err("a common file was treated as a BPF object");
        let _ = object_type_from_fd(io::stdout().as_fd())
            .expect_err("the stdout fd was treated as a BPF object");
    }
}