libfuzzer_sys/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
//! Bindings to [libFuzzer](http://llvm.org/docs/LibFuzzer.html): a runtime for
//! coverage-guided fuzzing.
//!
//! See [the `cargo-fuzz`
//! guide](https://rust-fuzz.github.io/book/cargo-fuzz.html) for a usage
//! tutorial.
//!
//! The main export of this crate is [the `fuzz_target!`
//! macro](./macro.fuzz_target.html), which allows you to define targets for
//! libFuzzer to exercise.

#![deny(missing_docs, missing_debug_implementations)]

pub use arbitrary;
use std::sync::OnceLock;

/// Indicates whether the input should be kept in the corpus or rejected. This
/// should be returned by your fuzz target. If your fuzz target does not return
/// a value (i.e., returns `()`), then the input will be kept in the corpus.
#[derive(Debug)]
pub enum Corpus {
    /// Keep the input in the corpus.
    Keep,

    /// Reject the input and do not keep it in the corpus.
    Reject,
}

impl From<()> for Corpus {
    fn from(_: ()) -> Self {
        Self::Keep
    }
}

impl Corpus {
    #[doc(hidden)]
    /// Convert this Corpus result into the [integer codes used by
    /// `libFuzzer`](https://llvm.org/docs/LibFuzzer.html#rejecting-unwanted-inputs).
    /// This is -1 for reject, 0 for keep.
    pub fn to_libfuzzer_code(self) -> i32 {
        match self {
            Corpus::Keep => 0,
            Corpus::Reject => -1,
        }
    }
}

extern "C" {
    // We do not actually cross the FFI bound here.
    #[allow(improper_ctypes)]
    fn rust_fuzzer_test_input(input: &[u8]) -> i32;

    fn LLVMFuzzerMutate(data: *mut u8, size: usize, max_size: usize) -> usize;
}

/// Do not use; only for LibFuzzer's consumption.
#[doc(hidden)]
#[export_name = "LLVMFuzzerTestOneInput"]
pub unsafe fn test_input_wrap(data: *const u8, size: usize) -> i32 {
    let test_input = ::std::panic::catch_unwind(|| {
        let data_slice = ::std::slice::from_raw_parts(data, size);
        rust_fuzzer_test_input(data_slice)
    });

    match test_input {
        Ok(i) => i,
        Err(_) => {
            // hopefully the custom panic hook will be called before and abort the
            // process before the stack frames are unwinded.
            ::std::process::abort();
        }
    }
}

#[doc(hidden)]
pub fn rust_libfuzzer_debug_path() -> &'static Option<String> {
    static RUST_LIBFUZZER_DEBUG_PATH: OnceLock<Option<String>> = OnceLock::new();
    RUST_LIBFUZZER_DEBUG_PATH.get_or_init(|| std::env::var("RUST_LIBFUZZER_DEBUG_PATH").ok())
}

#[doc(hidden)]
#[export_name = "LLVMFuzzerInitialize"]
pub fn initialize(_argc: *const isize, _argv: *const *const *const u8) -> isize {
    // Registers a panic hook that aborts the process before unwinding.
    // It is useful to abort before unwinding so that the fuzzer will then be
    // able to analyse the process stack frames to tell different bugs appart.
    //
    // HACK / FIXME: it would be better to use `-C panic=abort` but it's currently
    // impossible to build code using compiler plugins with this flag.
    // We will be able to remove this code when
    // https://github.com/rust-lang/cargo/issues/5423 is fixed.
    let default_hook = ::std::panic::take_hook();
    ::std::panic::set_hook(Box::new(move |panic_info| {
        default_hook(panic_info);
        ::std::process::abort();
    }));
    0
}

/// Define a fuzz target.
///
/// ## Example
///
/// This example takes a `&[u8]` slice and attempts to parse it. The parsing
/// might fail and return an `Err`, but it shouldn't ever panic or segfault.
///
/// ```no_run
/// #![no_main]
///
/// use libfuzzer_sys::fuzz_target;
///
/// // Note: `|input|` is short for `|input: &[u8]|`.
/// fuzz_target!(|input| {
///     let _result: Result<_, _> = my_crate::parse(input);
/// });
/// # mod my_crate { pub fn parse(_: &[u8]) -> Result<(), ()> { unimplemented!() } }
/// ```
///
/// ## Rejecting Inputs
///
/// It may be desirable to reject some inputs, i.e. to not add them to the
/// corpus.
///
/// For example, when fuzzing an API consisting of parsing and other logic,
/// one may want to allow only those inputs into the corpus that parse
/// successfully. To indicate whether an input should be kept in or rejected
/// from the corpus, return either [Corpus::Keep] or [Corpus::Reject] from your
/// fuzz target. The default behavior (e.g. if `()` is returned) is to keep the
/// input in the corpus.
///
/// For example:
///
/// ```no_run
/// #![no_main]
///
/// use libfuzzer_sys::{Corpus, fuzz_target};
///
/// fuzz_target!(|input: String| -> Corpus {
///     let parts: Vec<&str> = input.splitn(2, '=').collect();
///     if parts.len() != 2 {
///         return Corpus::Reject;
///     }
///
///     let key = parts[0];
///     let value = parts[1];
///     let _result: Result<_, _> = my_crate::parse(key, value);
///     Corpus::Keep
/// });
/// # mod my_crate { pub fn parse(_key: &str, _value: &str) -> Result<(), ()> { unimplemented!() } }
/// ```
///
/// ## Arbitrary Input Types
///
/// The input is a `&[u8]` slice by default, but you can take arbitrary input
/// types, as long as the type implements [the `arbitrary` crate's `Arbitrary`
/// trait](https://docs.rs/arbitrary/*/arbitrary/trait.Arbitrary.html) (which is
/// also re-exported as `libfuzzer_sys::arbitrary::Arbitrary` for convenience).
///
/// For example, if you wanted to take an arbitrary RGB color, you could do the
/// following:
///
/// ```no_run
/// #![no_main]
/// # mod foo {
///
/// use libfuzzer_sys::{arbitrary::{Arbitrary, Error, Unstructured}, fuzz_target};
///
/// #[derive(Debug)]
/// pub struct Rgb {
///     r: u8,
///     g: u8,
///     b: u8,
/// }
///
/// impl<'a> Arbitrary<'a> for Rgb {
///     fn arbitrary(raw: &mut Unstructured<'a>) -> Result<Self, Error> {
///         let mut buf = [0; 3];
///         raw.fill_buffer(&mut buf)?;
///         let r = buf[0];
///         let g = buf[1];
///         let b = buf[2];
///         Ok(Rgb { r, g, b })
///     }
/// }
///
/// // Write a fuzz target that works with RGB colors instead of raw bytes.
/// fuzz_target!(|color: Rgb| {
///     my_crate::convert_color(color);
/// });
/// # mod my_crate {
/// #     use super::Rgb;
/// #     pub fn convert_color(_: Rgb) {}
/// # }
/// # }
/// ```
///
/// You can also enable the `arbitrary` crate's custom derive via this crate's
/// `"arbitrary-derive"` cargo feature.
#[macro_export]
macro_rules! fuzz_target {
    (|$bytes:ident| $body:expr) => {
        const _: () = {
            /// Auto-generated function
            #[no_mangle]
            pub extern "C" fn rust_fuzzer_test_input(bytes: &[u8]) -> i32 {
                // When `RUST_LIBFUZZER_DEBUG_PATH` is set, write the debug
                // formatting of the input to that file. This is only intended for
                // `cargo fuzz`'s use!

                // `RUST_LIBFUZZER_DEBUG_PATH` is set in initialization.
                if let Some(path) = $crate::rust_libfuzzer_debug_path() {
                    use std::io::Write;
                    let mut file = std::fs::File::create(path)
                        .expect("failed to create `RUST_LIBFUZZER_DEBUG_PATH` file");
                    writeln!(&mut file, "{:?}", bytes)
                        .expect("failed to write to `RUST_LIBFUZZER_DEBUG_PATH` file");
                    return 0;
                }

                __libfuzzer_sys_run(bytes);
                0
            }

            // Split out the actual fuzzer into a separate function which is
            // tagged as never being inlined. This ensures that if the fuzzer
            // panics there's at least one stack frame which is named uniquely
            // according to this specific fuzzer that this is embedded within.
            //
            // Systems like oss-fuzz try to deduplicate crashes and without this
            // panics in separate fuzzers can accidentally appear the same
            // because each fuzzer will have a function called
            // `rust_fuzzer_test_input`. By using a normal Rust function here
            // it's named something like `the_fuzzer_name::_::__libfuzzer_sys_run` which should
            // ideally help prevent oss-fuzz from deduplicate fuzz bugs across
            // distinct targets accidentally.
            #[inline(never)]
            fn __libfuzzer_sys_run($bytes: &[u8]) {
                $body
            }
        };
    };

    (|$data:ident: &[u8]| $body:expr) => {
        $crate::fuzz_target!(|$data| $body);
    };

    (|$data:ident: $dty:ty| $body:expr) => {
        $crate::fuzz_target!(|$data: $dty| -> () { $body });
    };

    (|$data:ident: $dty:ty| -> $rty:ty $body:block) => {
        const _: () = {
            /// Auto-generated function
            #[no_mangle]
            pub extern "C" fn rust_fuzzer_test_input(bytes: &[u8]) -> i32 {
                use $crate::arbitrary::{Arbitrary, Unstructured};

                // Early exit if we don't have enough bytes for the `Arbitrary`
                // implementation. This helps the fuzzer avoid exploring all the
                // different not-enough-input-bytes paths inside the `Arbitrary`
                // implementation. Additionally, it exits faster, letting the fuzzer
                // get to longer inputs that actually lead to interesting executions
                // quicker.
                if bytes.len() < <$dty as Arbitrary>::size_hint(0).0 {
                    return -1;
                }

                let mut u = Unstructured::new(bytes);
                let data = <$dty as Arbitrary>::arbitrary_take_rest(u);

                // When `RUST_LIBFUZZER_DEBUG_PATH` is set, write the debug
                // formatting of the input to that file. This is only intended for
                // `cargo fuzz`'s use!

                // `RUST_LIBFUZZER_DEBUG_PATH` is set in initialization.
                if let Some(path) = $crate::rust_libfuzzer_debug_path() {
                    use std::io::Write;
                    let mut file = std::fs::File::create(path)
                        .expect("failed to create `RUST_LIBFUZZER_DEBUG_PATH` file");
                    (match data {
                        Ok(data) => writeln!(&mut file, "{:#?}", data),
                        Err(err) => writeln!(&mut file, "Arbitrary Error: {}", err),
                    })
                    .expect("failed to write to `RUST_LIBFUZZER_DEBUG_PATH` file");
                    return -1;
                }

                let data = match data {
                    Ok(d) => d,
                    Err(_) => return -1,
                };

                let result = ::libfuzzer_sys::Corpus::from(__libfuzzer_sys_run(data));
                result.to_libfuzzer_code()
            }

            // See above for why this is split to a separate function.
            #[inline(never)]
            fn __libfuzzer_sys_run($data: $dty) -> $rty {
                $body
            }
        };
    };
}

/// Define a custom mutator.
///
/// This is optional, and libFuzzer will use its own, default mutation strategy
/// if this is not provided.
///
/// You might consider using a custom mutator when your fuzz target is very
/// particular about the shape of its input:
///
/// * You want to fuzz "deeper" than just the parser.
/// * The input contains checksums that have to match the hash of some subset of
///   the data or else the whole thing is invalid, and therefore mutating any of
///   that subset means you need to recompute the checksums.
/// * Small random changes to the input buffer make it invalid.
///
/// That is, a custom mutator is useful in similar situations where [a `T:
/// Arbitrary` input type](macro.fuzz_target.html#arbitrary-input-types) is
/// useful. Note that the two approaches are not mutually exclusive; you can use
/// whichever is easier for your problem domain or both!
///
/// ## Implementation Contract
///
/// The original, unmodified input is given in `data[..size]`.
///
/// You must modify the data in place and return the new size.
///
/// The new size should not be greater than `max_size`. If this is not the case,
/// then the `data` will be truncated to fit within `max_size`. Note that
/// `max_size < size` is possible when shrinking test cases.
///
/// You must produce the same mutation given the same `seed`. Generally, when
/// choosing what kind of mutation to make or where to mutate, you should start
/// by creating a random number generator (RNG) that is seeded with the given
/// `seed` and then consult the RNG whenever making a decision:
///
/// ```no_run
/// #![no_main]
///
/// use rand::{rngs::StdRng, Rng, SeedableRng};
///
/// libfuzzer_sys::fuzz_mutator!(|data: &mut [u8], size: usize, max_size: usize, seed: u32| {
///     let mut rng = StdRng::seed_from_u64(seed as u64);
///
/// #   let first_mutation = |_, _, _, _| todo!();
/// #   let second_mutation = |_, _, _, _| todo!();
/// #   let third_mutation = |_, _, _, _| todo!();
/// #   let fourth_mutation = |_, _, _, _| todo!();
///     // Choose which of our four supported kinds of mutations we want to make.
///     match rng.gen_range(0..4) {
///         0 => first_mutation(rng, data, size, max_size),
///         1 => second_mutation(rng, data, size, max_size),
///         2 => third_mutation(rng, data, size, max_size),
///         3 => fourth_mutation(rng, data, size, max_size),
///         _ => unreachable!()
///     }
/// });
/// ```
///
/// ## Example: Compression
///
/// Consider a simple fuzz target that takes compressed data as input,
/// decompresses it, and then asserts that the decompressed data doesn't begin
/// with "boom". It is difficult for `libFuzzer` (or any other fuzzer) to crash
/// this fuzz target because nearly all mutations it makes will invalidate the
/// compression format. Therefore, we use a custom mutator that decompresses the
/// raw input, mutates the decompressed data, and then recompresses it. This
/// allows `libFuzzer` to quickly discover crashing inputs.
///
/// ```no_run
/// #![no_main]
///
/// use flate2::{read::GzDecoder, write::GzEncoder, Compression};
/// use libfuzzer_sys::{fuzz_mutator, fuzz_target};
/// use std::io::{Read, Write};
///
/// fuzz_target!(|data: &[u8]| {
///     // Decompress the input data and crash if it starts with "boom".
///     if let Some(data) = decompress(data) {
///         if data.starts_with(b"boom") {
///             panic!();
///         }
///     }
/// });
///
/// fuzz_mutator!(
///     |data: &mut [u8], size: usize, max_size: usize, _seed: u32| {
///         // Decompress the input data. If that fails, use a dummy value.
///         let mut decompressed = decompress(&data[..size]).unwrap_or_else(|| b"hi".to_vec());
///
///         // Mutate the decompressed data with `libFuzzer`'s default mutator. Make
///         // the `decompressed` vec's extra capacity available for insertion
///         // mutations via `resize`.
///         let len = decompressed.len();
///         let cap = decompressed.capacity();
///         decompressed.resize(cap, 0);
///         let new_decompressed_size = libfuzzer_sys::fuzzer_mutate(&mut decompressed, len, cap);
///
///         // Recompress the mutated data.
///         let compressed = compress(&decompressed[..new_decompressed_size]);
///
///         // Copy the recompressed mutated data into `data` and return the new size.
///         let new_size = std::cmp::min(max_size, compressed.len());
///         data[..new_size].copy_from_slice(&compressed[..new_size]);
///         new_size
///     }
/// );
///
/// fn decompress(compressed_data: &[u8]) -> Option<Vec<u8>> {
///     let mut decoder = GzDecoder::new(compressed_data);
///     let mut decompressed = Vec::new();
///     if decoder.read_to_end(&mut decompressed).is_ok() {
///         Some(decompressed)
///     } else {
///         None
///     }
/// }
///
/// fn compress(data: &[u8]) -> Vec<u8> {
///     let mut encoder = GzEncoder::new(Vec::new(), Compression::default());
///     encoder
///         .write_all(data)
///         .expect("writing into a vec is infallible");
///     encoder.finish().expect("writing into a vec is infallible")
/// }
/// ```
///
/// This example is inspired by [a similar example from the official `libFuzzer`
/// docs](https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md#example-compression).
///
/// ## More Example Ideas
///
/// * A PNG custom mutator that decodes a PNG, mutates the image, and then
/// re-encodes the mutated image as a new PNG.
///
/// * A [`serde`](https://serde.rs/) custom mutator that deserializes your
///   structure, mutates it, and then reserializes it.
///
/// * A Wasm binary custom mutator that inserts, replaces, and removes a
///   bytecode instruction in a function's body.
///
/// * An HTTP request custom mutator that inserts, replaces, and removes a
///   header from an HTTP request.
#[macro_export]
macro_rules! fuzz_mutator {
    (
        |
        $data:ident : &mut [u8] ,
        $size:ident : usize ,
        $max_size:ident : usize ,
        $seed:ident : u32 $(,)*
        |
        $body:block
    ) => {
        /// Auto-generated function. Do not use; only for LibFuzzer's
        /// consumption.
        #[export_name = "LLVMFuzzerCustomMutator"]
        #[doc(hidden)]
        pub unsafe fn rust_fuzzer_custom_mutator(
            $data: *mut u8,
            $size: usize,
            $max_size: usize,
            $seed: std::os::raw::c_uint,
        ) -> usize {
            // Depending on if we are growing or shrinking the test case, `size`
            // might be larger or smaller than `max_size`. The `data`'s capacity
            // is the maximum of the two.
            let len = std::cmp::max($max_size, $size);
            let $data: &mut [u8] = std::slice::from_raw_parts_mut($data, len);

            // `unsigned int` is generally a `u32`, but not on all targets. Do
            // an infallible (and potentially lossy, but that's okay because it
            // preserves determinism) conversion.
            let $seed = $seed as u32;

            // Define and invoke a new, safe function so that the body doesn't
            // inherit `unsafe`.
            fn custom_mutator(
                $data: &mut [u8],
                $size: usize,
                $max_size: usize,
                $seed: u32,
            ) -> usize {
                $body
            }
            let new_size = custom_mutator($data, $size, $max_size, $seed);

            // Truncate the new size if it is larger than the max.
            std::cmp::min(new_size, $max_size)
        }
    };
}

/// The default `libFuzzer` mutator.
///
/// You generally don't have to use this at all unless you're defining a
/// custom mutator with [the `fuzz_mutator!` macro][crate::fuzz_mutator].
///
/// Mutates `data[..size]` in place such that the mutated data is no larger than
/// `max_size` and returns the new size of the mutated data.
///
/// To only allow shrinking mutations, make `max_size < size`.
///
/// To additionally allow mutations that grow the size of the data, make
/// `max_size > size`.
///
/// Both `size` and `max_size` must be less than or equal to `data.len()`.
///
/// # Example
///
/// ```no_run
/// // Create some data in a buffer.
/// let mut data = vec![0; 128];
/// data[..b"hello".len()].copy_from_slice(b"hello");
///
/// // Ask `libFuzzer` to mutate the data. By setting `max_size` to our buffer's
/// // full length, we are allowing `libFuzzer` to perform mutations that grow
/// // the size of the data, such as insertions.
/// let size = b"hello".len();
/// let max_size = data.len();
/// let new_size = libfuzzer_sys::fuzzer_mutate(&mut data, size, max_size);
///
/// // Get the mutated data out of the buffer.
/// let mutated_data = &data[..new_size];
/// ```
pub fn fuzzer_mutate(data: &mut [u8], size: usize, max_size: usize) -> usize {
    assert!(size <= data.len());
    assert!(max_size <= data.len());
    let new_size = unsafe { LLVMFuzzerMutate(data.as_mut_ptr(), size, max_size) };
    assert!(new_size <= data.len());
    new_size
}

/// Define a custom cross-over function to combine test cases.
///
/// This is optional, and libFuzzer will use its own, default cross-over strategy
/// if this is not provided. (As of the time of writing, this default strategy
/// takes alternating byte sequences from the two test cases, to construct the
/// new one) (see `FuzzerCrossOver.cpp`)
///
/// This could potentially be useful if your input is, for instance, a
/// sequence of fixed sized, multi-byte values and the crossover could then
/// merge discrete values rather than joining parts of a value.
///
/// ## Implementation Contract
///
/// The original, read-only inputs are given in the full slices of `data1`, and
/// `data2` (as opposed to the, potentially, partial slice of `data` in
/// [the `fuzz_mutator!` macro][crate::fuzz_mutator]).
///
/// You must place the new input merged from the two existing inputs' data
/// into `out` and return the size of the relevant data written to that slice.
///
/// The deterministic requirements from [the `fuzz_mutator!` macro][crate::fuzz_mutator]
/// apply as well to the `seed` parameter
///
/// ## Example: Floating-Point Sum NaN
///
/// ```no_run
/// #![no_main]
///
/// use libfuzzer_sys::{fuzz_crossover, fuzz_mutator, fuzz_target, fuzzer_mutate};
/// use rand::{rngs::StdRng, Rng, SeedableRng};
/// use std::mem::size_of;
///
/// fuzz_target!(|data: &[u8]| {
///     let (_, floats, _) = unsafe { data.align_to::<f64>() };
///
///     let res = floats
///         .iter()
///         .fold(0.0, |a, b| if b.is_nan() { a } else { a + b });
///
///     assert!(
///         !res.is_nan(),
///         "The sum of the following floats resulted in a NaN: {floats:?}"
///     );
/// });
///
/// // Inject some ...potentially problematic values to make the example close
/// // more quickly.
/// fuzz_mutator!(|data: &mut [u8], size: usize, max_size: usize, seed: u32| {
///     let mut gen = StdRng::seed_from_u64(seed.into());
///
///     let (_, floats, _) = unsafe { data[..size].align_to_mut::<f64>() };
///
///     let x = gen.gen_range(0..=1000);
///     if x == 0 && !floats.is_empty() {
///         floats[0] = f64::INFINITY;
///     } else if x == 1000 && floats.len() > 1 {
///         floats[1] = f64::NEG_INFINITY;
///     } else {
///         return fuzzer_mutate(data, size, max_size);
///     }
///
///     size
/// });
///
/// fuzz_crossover!(|data1: &[u8], data2: &[u8], out: &mut [u8], _seed: u32| {
///     // Decode each source to see how many floats we can pull with proper
///     // alignment, and destination as to how many will fit with proper alignment
///     //
///     // Keep track of the unaligned prefix to `out`, as we will need to remember
///     // that those bytes will remain prepended to the actual floats that we
///     // write into the out buffer.
///     let (out_pref, out_floats, _) = unsafe { out.align_to_mut::<f64>() };
///     let (_, d1_floats, _) = unsafe { data1.align_to::<f64>() };
///     let (_, d2_floats, _) = unsafe { data2.align_to::<f64>() };
///
///     // Put into the destination, floats first from data1 then from data2, ...if
///     // possible given the size of `out`
///     let mut i: usize = 0;
///     for float in d1_floats.iter().chain(d2_floats).take(out_floats.len()) {
///         out_floats[i] = *float;
///         i += 1;
///     }
///
///     // Now that we have written the true floats, report back to the fuzzing
///     // engine that we left the unaligned `out` prefix bytes at the beginning of
///     // `out` and also then the floats that we wrote into the aligned float
///     // section.
///     out_pref.len() * size_of::<u8>() + i * size_of::<f64>()
/// });
/// ```
///
/// This example is a minimized version of [Erik Rigtorp's floating point
/// summation fuzzing example][1]. A more detailed version of this experiment
/// can be found in the `example_crossover` directory.
///
/// [1]: https://rigtorp.se/fuzzing-floating-point-code/
#[macro_export]
macro_rules! fuzz_crossover {
    (
        |
        $data1:ident : &[u8] ,
        $data2:ident : &[u8] ,
        $out:ident : &mut [u8] ,
        $seed:ident : u32 $(,)*
        |
        $body:block
    ) => {
        /// Auto-generated function. Do not use; only for LibFuzzer's
        /// consumption.
        #[export_name = "LLVMFuzzerCustomCrossOver"]
        #[doc(hidden)]
        pub unsafe fn rust_fuzzer_custom_crossover(
            $data1: *const u8,
            size1: usize,
            $data2: *const u8,
            size2: usize,
            $out: *mut u8,
            max_out_size: usize,
            $seed: std::os::raw::c_uint,
        ) -> usize {
            let $data1: &[u8] = std::slice::from_raw_parts($data1, size1);
            let $data2: &[u8] = std::slice::from_raw_parts($data2, size2);
            let $out: &mut [u8] = std::slice::from_raw_parts_mut($out, max_out_size);

            // `unsigned int` is generally a `u32`, but not on all targets. Do
            // an infallible (and potentially lossy, but that's okay because it
            // preserves determinism) conversion.
            let $seed = $seed as u32;

            // Define and invoke a new, safe function so that the body doesn't
            // inherit `unsafe`.
            fn custom_crossover(
                $data1: &[u8],
                $data2: &[u8],
                $out: &mut [u8],
                $seed: u32,
            ) -> usize {
                $body
            }

            custom_crossover($data1, $data2, $out, $seed)
        }
    };
}