libfuzzer_sys/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
//! Bindings to [libFuzzer](http://llvm.org/docs/LibFuzzer.html): a runtime for
//! coverage-guided fuzzing.
//!
//! See [the `cargo-fuzz`
//! guide](https://rust-fuzz.github.io/book/cargo-fuzz.html) for a usage
//! tutorial.
//!
//! The main export of this crate is [the `fuzz_target!`
//! macro](./macro.fuzz_target.html), which allows you to define targets for
//! libFuzzer to exercise.
#![deny(missing_docs, missing_debug_implementations)]
pub use arbitrary;
use std::sync::OnceLock;
/// Indicates whether the input should be kept in the corpus or rejected. This
/// should be returned by your fuzz target. If your fuzz target does not return
/// a value (i.e., returns `()`), then the input will be kept in the corpus.
#[derive(Debug)]
pub enum Corpus {
/// Keep the input in the corpus.
Keep,
/// Reject the input and do not keep it in the corpus.
Reject,
}
impl From<()> for Corpus {
fn from(_: ()) -> Self {
Self::Keep
}
}
impl Corpus {
#[doc(hidden)]
/// Convert this Corpus result into the [integer codes used by
/// `libFuzzer`](https://llvm.org/docs/LibFuzzer.html#rejecting-unwanted-inputs).
/// This is -1 for reject, 0 for keep.
pub fn to_libfuzzer_code(self) -> i32 {
match self {
Corpus::Keep => 0,
Corpus::Reject => -1,
}
}
}
extern "C" {
// We do not actually cross the FFI bound here.
#[allow(improper_ctypes)]
fn rust_fuzzer_test_input(input: &[u8]) -> i32;
fn LLVMFuzzerMutate(data: *mut u8, size: usize, max_size: usize) -> usize;
}
/// Do not use; only for LibFuzzer's consumption.
#[doc(hidden)]
#[export_name = "LLVMFuzzerTestOneInput"]
pub unsafe fn test_input_wrap(data: *const u8, size: usize) -> i32 {
let test_input = ::std::panic::catch_unwind(|| {
let data_slice = ::std::slice::from_raw_parts(data, size);
rust_fuzzer_test_input(data_slice)
});
match test_input {
Ok(i) => i,
Err(_) => {
// hopefully the custom panic hook will be called before and abort the
// process before the stack frames are unwinded.
::std::process::abort();
}
}
}
#[doc(hidden)]
pub fn rust_libfuzzer_debug_path() -> &'static Option<String> {
static RUST_LIBFUZZER_DEBUG_PATH: OnceLock<Option<String>> = OnceLock::new();
RUST_LIBFUZZER_DEBUG_PATH.get_or_init(|| std::env::var("RUST_LIBFUZZER_DEBUG_PATH").ok())
}
#[doc(hidden)]
#[export_name = "LLVMFuzzerInitialize"]
pub fn initialize(_argc: *const isize, _argv: *const *const *const u8) -> isize {
// Registers a panic hook that aborts the process before unwinding.
// It is useful to abort before unwinding so that the fuzzer will then be
// able to analyse the process stack frames to tell different bugs appart.
//
// HACK / FIXME: it would be better to use `-C panic=abort` but it's currently
// impossible to build code using compiler plugins with this flag.
// We will be able to remove this code when
// https://github.com/rust-lang/cargo/issues/5423 is fixed.
let default_hook = ::std::panic::take_hook();
::std::panic::set_hook(Box::new(move |panic_info| {
default_hook(panic_info);
::std::process::abort();
}));
0
}
/// Define a fuzz target.
///
/// ## Example
///
/// This example takes a `&[u8]` slice and attempts to parse it. The parsing
/// might fail and return an `Err`, but it shouldn't ever panic or segfault.
///
/// ```no_run
/// #![no_main]
///
/// use libfuzzer_sys::fuzz_target;
///
/// // Note: `|input|` is short for `|input: &[u8]|`.
/// fuzz_target!(|input| {
/// let _result: Result<_, _> = my_crate::parse(input);
/// });
/// # mod my_crate { pub fn parse(_: &[u8]) -> Result<(), ()> { unimplemented!() } }
/// ```
///
/// ## Rejecting Inputs
///
/// It may be desirable to reject some inputs, i.e. to not add them to the
/// corpus.
///
/// For example, when fuzzing an API consisting of parsing and other logic,
/// one may want to allow only those inputs into the corpus that parse
/// successfully. To indicate whether an input should be kept in or rejected
/// from the corpus, return either [Corpus::Keep] or [Corpus::Reject] from your
/// fuzz target. The default behavior (e.g. if `()` is returned) is to keep the
/// input in the corpus.
///
/// For example:
///
/// ```no_run
/// #![no_main]
///
/// use libfuzzer_sys::{Corpus, fuzz_target};
///
/// fuzz_target!(|input: String| -> Corpus {
/// let parts: Vec<&str> = input.splitn(2, '=').collect();
/// if parts.len() != 2 {
/// return Corpus::Reject;
/// }
///
/// let key = parts[0];
/// let value = parts[1];
/// let _result: Result<_, _> = my_crate::parse(key, value);
/// Corpus::Keep
/// });
/// # mod my_crate { pub fn parse(_key: &str, _value: &str) -> Result<(), ()> { unimplemented!() } }
/// ```
///
/// ## Arbitrary Input Types
///
/// The input is a `&[u8]` slice by default, but you can take arbitrary input
/// types, as long as the type implements [the `arbitrary` crate's `Arbitrary`
/// trait](https://docs.rs/arbitrary/*/arbitrary/trait.Arbitrary.html) (which is
/// also re-exported as `libfuzzer_sys::arbitrary::Arbitrary` for convenience).
///
/// For example, if you wanted to take an arbitrary RGB color, you could do the
/// following:
///
/// ```no_run
/// #![no_main]
/// # mod foo {
///
/// use libfuzzer_sys::{arbitrary::{Arbitrary, Error, Unstructured}, fuzz_target};
///
/// #[derive(Debug)]
/// pub struct Rgb {
/// r: u8,
/// g: u8,
/// b: u8,
/// }
///
/// impl<'a> Arbitrary<'a> for Rgb {
/// fn arbitrary(raw: &mut Unstructured<'a>) -> Result<Self, Error> {
/// let mut buf = [0; 3];
/// raw.fill_buffer(&mut buf)?;
/// let r = buf[0];
/// let g = buf[1];
/// let b = buf[2];
/// Ok(Rgb { r, g, b })
/// }
/// }
///
/// // Write a fuzz target that works with RGB colors instead of raw bytes.
/// fuzz_target!(|color: Rgb| {
/// my_crate::convert_color(color);
/// });
/// # mod my_crate {
/// # use super::Rgb;
/// # pub fn convert_color(_: Rgb) {}
/// # }
/// # }
/// ```
///
/// You can also enable the `arbitrary` crate's custom derive via this crate's
/// `"arbitrary-derive"` cargo feature.
#[macro_export]
macro_rules! fuzz_target {
(|$bytes:ident| $body:expr) => {
const _: () = {
/// Auto-generated function
#[no_mangle]
pub extern "C" fn rust_fuzzer_test_input(bytes: &[u8]) -> i32 {
// When `RUST_LIBFUZZER_DEBUG_PATH` is set, write the debug
// formatting of the input to that file. This is only intended for
// `cargo fuzz`'s use!
// `RUST_LIBFUZZER_DEBUG_PATH` is set in initialization.
if let Some(path) = $crate::rust_libfuzzer_debug_path() {
use std::io::Write;
let mut file = std::fs::File::create(path)
.expect("failed to create `RUST_LIBFUZZER_DEBUG_PATH` file");
writeln!(&mut file, "{:?}", bytes)
.expect("failed to write to `RUST_LIBFUZZER_DEBUG_PATH` file");
return 0;
}
__libfuzzer_sys_run(bytes);
0
}
// Split out the actual fuzzer into a separate function which is
// tagged as never being inlined. This ensures that if the fuzzer
// panics there's at least one stack frame which is named uniquely
// according to this specific fuzzer that this is embedded within.
//
// Systems like oss-fuzz try to deduplicate crashes and without this
// panics in separate fuzzers can accidentally appear the same
// because each fuzzer will have a function called
// `rust_fuzzer_test_input`. By using a normal Rust function here
// it's named something like `the_fuzzer_name::_::__libfuzzer_sys_run` which should
// ideally help prevent oss-fuzz from deduplicate fuzz bugs across
// distinct targets accidentally.
#[inline(never)]
fn __libfuzzer_sys_run($bytes: &[u8]) {
$body
}
};
};
(|$data:ident: &[u8]| $body:expr) => {
$crate::fuzz_target!(|$data| $body);
};
(|$data:ident: $dty:ty| $body:expr) => {
$crate::fuzz_target!(|$data: $dty| -> () { $body });
};
(|$data:ident: $dty:ty| -> $rty:ty $body:block) => {
const _: () = {
/// Auto-generated function
#[no_mangle]
pub extern "C" fn rust_fuzzer_test_input(bytes: &[u8]) -> i32 {
use $crate::arbitrary::{Arbitrary, Unstructured};
// Early exit if we don't have enough bytes for the `Arbitrary`
// implementation. This helps the fuzzer avoid exploring all the
// different not-enough-input-bytes paths inside the `Arbitrary`
// implementation. Additionally, it exits faster, letting the fuzzer
// get to longer inputs that actually lead to interesting executions
// quicker.
if bytes.len() < <$dty as Arbitrary>::size_hint(0).0 {
return -1;
}
let mut u = Unstructured::new(bytes);
let data = <$dty as Arbitrary>::arbitrary_take_rest(u);
// When `RUST_LIBFUZZER_DEBUG_PATH` is set, write the debug
// formatting of the input to that file. This is only intended for
// `cargo fuzz`'s use!
// `RUST_LIBFUZZER_DEBUG_PATH` is set in initialization.
if let Some(path) = $crate::rust_libfuzzer_debug_path() {
use std::io::Write;
let mut file = std::fs::File::create(path)
.expect("failed to create `RUST_LIBFUZZER_DEBUG_PATH` file");
(match data {
Ok(data) => writeln!(&mut file, "{:#?}", data),
Err(err) => writeln!(&mut file, "Arbitrary Error: {}", err),
})
.expect("failed to write to `RUST_LIBFUZZER_DEBUG_PATH` file");
return -1;
}
let data = match data {
Ok(d) => d,
Err(_) => return -1,
};
let result = ::libfuzzer_sys::Corpus::from(__libfuzzer_sys_run(data));
result.to_libfuzzer_code()
}
// See above for why this is split to a separate function.
#[inline(never)]
fn __libfuzzer_sys_run($data: $dty) -> $rty {
$body
}
};
};
}
/// Define a custom mutator.
///
/// This is optional, and libFuzzer will use its own, default mutation strategy
/// if this is not provided.
///
/// You might consider using a custom mutator when your fuzz target is very
/// particular about the shape of its input:
///
/// * You want to fuzz "deeper" than just the parser.
/// * The input contains checksums that have to match the hash of some subset of
/// the data or else the whole thing is invalid, and therefore mutating any of
/// that subset means you need to recompute the checksums.
/// * Small random changes to the input buffer make it invalid.
///
/// That is, a custom mutator is useful in similar situations where [a `T:
/// Arbitrary` input type](macro.fuzz_target.html#arbitrary-input-types) is
/// useful. Note that the two approaches are not mutually exclusive; you can use
/// whichever is easier for your problem domain or both!
///
/// ## Implementation Contract
///
/// The original, unmodified input is given in `data[..size]`.
///
/// You must modify the data in place and return the new size.
///
/// The new size should not be greater than `max_size`. If this is not the case,
/// then the `data` will be truncated to fit within `max_size`. Note that
/// `max_size < size` is possible when shrinking test cases.
///
/// You must produce the same mutation given the same `seed`. Generally, when
/// choosing what kind of mutation to make or where to mutate, you should start
/// by creating a random number generator (RNG) that is seeded with the given
/// `seed` and then consult the RNG whenever making a decision:
///
/// ```no_run
/// #![no_main]
///
/// use rand::{rngs::StdRng, Rng, SeedableRng};
///
/// libfuzzer_sys::fuzz_mutator!(|data: &mut [u8], size: usize, max_size: usize, seed: u32| {
/// let mut rng = StdRng::seed_from_u64(seed as u64);
///
/// # let first_mutation = |_, _, _, _| todo!();
/// # let second_mutation = |_, _, _, _| todo!();
/// # let third_mutation = |_, _, _, _| todo!();
/// # let fourth_mutation = |_, _, _, _| todo!();
/// // Choose which of our four supported kinds of mutations we want to make.
/// match rng.gen_range(0..4) {
/// 0 => first_mutation(rng, data, size, max_size),
/// 1 => second_mutation(rng, data, size, max_size),
/// 2 => third_mutation(rng, data, size, max_size),
/// 3 => fourth_mutation(rng, data, size, max_size),
/// _ => unreachable!()
/// }
/// });
/// ```
///
/// ## Example: Compression
///
/// Consider a simple fuzz target that takes compressed data as input,
/// decompresses it, and then asserts that the decompressed data doesn't begin
/// with "boom". It is difficult for `libFuzzer` (or any other fuzzer) to crash
/// this fuzz target because nearly all mutations it makes will invalidate the
/// compression format. Therefore, we use a custom mutator that decompresses the
/// raw input, mutates the decompressed data, and then recompresses it. This
/// allows `libFuzzer` to quickly discover crashing inputs.
///
/// ```no_run
/// #![no_main]
///
/// use flate2::{read::GzDecoder, write::GzEncoder, Compression};
/// use libfuzzer_sys::{fuzz_mutator, fuzz_target};
/// use std::io::{Read, Write};
///
/// fuzz_target!(|data: &[u8]| {
/// // Decompress the input data and crash if it starts with "boom".
/// if let Some(data) = decompress(data) {
/// if data.starts_with(b"boom") {
/// panic!();
/// }
/// }
/// });
///
/// fuzz_mutator!(
/// |data: &mut [u8], size: usize, max_size: usize, _seed: u32| {
/// // Decompress the input data. If that fails, use a dummy value.
/// let mut decompressed = decompress(&data[..size]).unwrap_or_else(|| b"hi".to_vec());
///
/// // Mutate the decompressed data with `libFuzzer`'s default mutator. Make
/// // the `decompressed` vec's extra capacity available for insertion
/// // mutations via `resize`.
/// let len = decompressed.len();
/// let cap = decompressed.capacity();
/// decompressed.resize(cap, 0);
/// let new_decompressed_size = libfuzzer_sys::fuzzer_mutate(&mut decompressed, len, cap);
///
/// // Recompress the mutated data.
/// let compressed = compress(&decompressed[..new_decompressed_size]);
///
/// // Copy the recompressed mutated data into `data` and return the new size.
/// let new_size = std::cmp::min(max_size, compressed.len());
/// data[..new_size].copy_from_slice(&compressed[..new_size]);
/// new_size
/// }
/// );
///
/// fn decompress(compressed_data: &[u8]) -> Option<Vec<u8>> {
/// let mut decoder = GzDecoder::new(compressed_data);
/// let mut decompressed = Vec::new();
/// if decoder.read_to_end(&mut decompressed).is_ok() {
/// Some(decompressed)
/// } else {
/// None
/// }
/// }
///
/// fn compress(data: &[u8]) -> Vec<u8> {
/// let mut encoder = GzEncoder::new(Vec::new(), Compression::default());
/// encoder
/// .write_all(data)
/// .expect("writing into a vec is infallible");
/// encoder.finish().expect("writing into a vec is infallible")
/// }
/// ```
///
/// This example is inspired by [a similar example from the official `libFuzzer`
/// docs](https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md#example-compression).
///
/// ## More Example Ideas
///
/// * A PNG custom mutator that decodes a PNG, mutates the image, and then
/// re-encodes the mutated image as a new PNG.
///
/// * A [`serde`](https://serde.rs/) custom mutator that deserializes your
/// structure, mutates it, and then reserializes it.
///
/// * A Wasm binary custom mutator that inserts, replaces, and removes a
/// bytecode instruction in a function's body.
///
/// * An HTTP request custom mutator that inserts, replaces, and removes a
/// header from an HTTP request.
#[macro_export]
macro_rules! fuzz_mutator {
(
|
$data:ident : &mut [u8] ,
$size:ident : usize ,
$max_size:ident : usize ,
$seed:ident : u32 $(,)*
|
$body:block
) => {
/// Auto-generated function. Do not use; only for LibFuzzer's
/// consumption.
#[export_name = "LLVMFuzzerCustomMutator"]
#[doc(hidden)]
pub unsafe fn rust_fuzzer_custom_mutator(
$data: *mut u8,
$size: usize,
$max_size: usize,
$seed: std::os::raw::c_uint,
) -> usize {
// Depending on if we are growing or shrinking the test case, `size`
// might be larger or smaller than `max_size`. The `data`'s capacity
// is the maximum of the two.
let len = std::cmp::max($max_size, $size);
let $data: &mut [u8] = std::slice::from_raw_parts_mut($data, len);
// `unsigned int` is generally a `u32`, but not on all targets. Do
// an infallible (and potentially lossy, but that's okay because it
// preserves determinism) conversion.
let $seed = $seed as u32;
// Define and invoke a new, safe function so that the body doesn't
// inherit `unsafe`.
fn custom_mutator(
$data: &mut [u8],
$size: usize,
$max_size: usize,
$seed: u32,
) -> usize {
$body
}
let new_size = custom_mutator($data, $size, $max_size, $seed);
// Truncate the new size if it is larger than the max.
std::cmp::min(new_size, $max_size)
}
};
}
/// The default `libFuzzer` mutator.
///
/// You generally don't have to use this at all unless you're defining a
/// custom mutator with [the `fuzz_mutator!` macro][crate::fuzz_mutator].
///
/// Mutates `data[..size]` in place such that the mutated data is no larger than
/// `max_size` and returns the new size of the mutated data.
///
/// To only allow shrinking mutations, make `max_size < size`.
///
/// To additionally allow mutations that grow the size of the data, make
/// `max_size > size`.
///
/// Both `size` and `max_size` must be less than or equal to `data.len()`.
///
/// # Example
///
/// ```no_run
/// // Create some data in a buffer.
/// let mut data = vec![0; 128];
/// data[..b"hello".len()].copy_from_slice(b"hello");
///
/// // Ask `libFuzzer` to mutate the data. By setting `max_size` to our buffer's
/// // full length, we are allowing `libFuzzer` to perform mutations that grow
/// // the size of the data, such as insertions.
/// let size = b"hello".len();
/// let max_size = data.len();
/// let new_size = libfuzzer_sys::fuzzer_mutate(&mut data, size, max_size);
///
/// // Get the mutated data out of the buffer.
/// let mutated_data = &data[..new_size];
/// ```
pub fn fuzzer_mutate(data: &mut [u8], size: usize, max_size: usize) -> usize {
assert!(size <= data.len());
assert!(max_size <= data.len());
let new_size = unsafe { LLVMFuzzerMutate(data.as_mut_ptr(), size, max_size) };
assert!(new_size <= data.len());
new_size
}
/// Define a custom cross-over function to combine test cases.
///
/// This is optional, and libFuzzer will use its own, default cross-over strategy
/// if this is not provided. (As of the time of writing, this default strategy
/// takes alternating byte sequences from the two test cases, to construct the
/// new one) (see `FuzzerCrossOver.cpp`)
///
/// This could potentially be useful if your input is, for instance, a
/// sequence of fixed sized, multi-byte values and the crossover could then
/// merge discrete values rather than joining parts of a value.
///
/// ## Implementation Contract
///
/// The original, read-only inputs are given in the full slices of `data1`, and
/// `data2` (as opposed to the, potentially, partial slice of `data` in
/// [the `fuzz_mutator!` macro][crate::fuzz_mutator]).
///
/// You must place the new input merged from the two existing inputs' data
/// into `out` and return the size of the relevant data written to that slice.
///
/// The deterministic requirements from [the `fuzz_mutator!` macro][crate::fuzz_mutator]
/// apply as well to the `seed` parameter
///
/// ## Example: Floating-Point Sum NaN
///
/// ```no_run
/// #![no_main]
///
/// use libfuzzer_sys::{fuzz_crossover, fuzz_mutator, fuzz_target, fuzzer_mutate};
/// use rand::{rngs::StdRng, Rng, SeedableRng};
/// use std::mem::size_of;
///
/// fuzz_target!(|data: &[u8]| {
/// let (_, floats, _) = unsafe { data.align_to::<f64>() };
///
/// let res = floats
/// .iter()
/// .fold(0.0, |a, b| if b.is_nan() { a } else { a + b });
///
/// assert!(
/// !res.is_nan(),
/// "The sum of the following floats resulted in a NaN: {floats:?}"
/// );
/// });
///
/// // Inject some ...potentially problematic values to make the example close
/// // more quickly.
/// fuzz_mutator!(|data: &mut [u8], size: usize, max_size: usize, seed: u32| {
/// let mut gen = StdRng::seed_from_u64(seed.into());
///
/// let (_, floats, _) = unsafe { data[..size].align_to_mut::<f64>() };
///
/// let x = gen.gen_range(0..=1000);
/// if x == 0 && !floats.is_empty() {
/// floats[0] = f64::INFINITY;
/// } else if x == 1000 && floats.len() > 1 {
/// floats[1] = f64::NEG_INFINITY;
/// } else {
/// return fuzzer_mutate(data, size, max_size);
/// }
///
/// size
/// });
///
/// fuzz_crossover!(|data1: &[u8], data2: &[u8], out: &mut [u8], _seed: u32| {
/// // Decode each source to see how many floats we can pull with proper
/// // alignment, and destination as to how many will fit with proper alignment
/// //
/// // Keep track of the unaligned prefix to `out`, as we will need to remember
/// // that those bytes will remain prepended to the actual floats that we
/// // write into the out buffer.
/// let (out_pref, out_floats, _) = unsafe { out.align_to_mut::<f64>() };
/// let (_, d1_floats, _) = unsafe { data1.align_to::<f64>() };
/// let (_, d2_floats, _) = unsafe { data2.align_to::<f64>() };
///
/// // Put into the destination, floats first from data1 then from data2, ...if
/// // possible given the size of `out`
/// let mut i: usize = 0;
/// for float in d1_floats.iter().chain(d2_floats).take(out_floats.len()) {
/// out_floats[i] = *float;
/// i += 1;
/// }
///
/// // Now that we have written the true floats, report back to the fuzzing
/// // engine that we left the unaligned `out` prefix bytes at the beginning of
/// // `out` and also then the floats that we wrote into the aligned float
/// // section.
/// out_pref.len() * size_of::<u8>() + i * size_of::<f64>()
/// });
/// ```
///
/// This example is a minimized version of [Erik Rigtorp's floating point
/// summation fuzzing example][1]. A more detailed version of this experiment
/// can be found in the `example_crossover` directory.
///
/// [1]: https://rigtorp.se/fuzzing-floating-point-code/
#[macro_export]
macro_rules! fuzz_crossover {
(
|
$data1:ident : &[u8] ,
$data2:ident : &[u8] ,
$out:ident : &mut [u8] ,
$seed:ident : u32 $(,)*
|
$body:block
) => {
/// Auto-generated function. Do not use; only for LibFuzzer's
/// consumption.
#[export_name = "LLVMFuzzerCustomCrossOver"]
#[doc(hidden)]
pub unsafe fn rust_fuzzer_custom_crossover(
$data1: *const u8,
size1: usize,
$data2: *const u8,
size2: usize,
$out: *mut u8,
max_out_size: usize,
$seed: std::os::raw::c_uint,
) -> usize {
let $data1: &[u8] = std::slice::from_raw_parts($data1, size1);
let $data2: &[u8] = std::slice::from_raw_parts($data2, size2);
let $out: &mut [u8] = std::slice::from_raw_parts_mut($out, max_out_size);
// `unsigned int` is generally a `u32`, but not on all targets. Do
// an infallible (and potentially lossy, but that's okay because it
// preserves determinism) conversion.
let $seed = $seed as u32;
// Define and invoke a new, safe function so that the body doesn't
// inherit `unsafe`.
fn custom_crossover(
$data1: &[u8],
$data2: &[u8],
$out: &mut [u8],
$seed: u32,
) -> usize {
$body
}
custom_crossover($data1, $data2, $out, $seed)
}
};
}