1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
use super::error::DecodingError;
use core::fmt;
use p256::{
ecdsa::{
signature::{Signer, Verifier},
Signature, SigningKey, VerifyingKey,
},
EncodedPoint,
};
#[derive(Clone)]
pub struct Keypair {
secret: SecretKey,
public: PublicKey,
}
impl Keypair {
pub fn generate() -> Keypair {
Keypair::from(SecretKey::generate())
}
pub fn sign(&self, msg: &[u8]) -> Vec<u8> {
self.secret.sign(msg)
}
pub fn public(&self) -> &PublicKey {
&self.public
}
pub fn secret(&self) -> &SecretKey {
&self.secret
}
}
impl fmt::Debug for Keypair {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Keypair")
.field("public", &self.public())
.finish()
}
}
impl From<SecretKey> for Keypair {
fn from(secret: SecretKey) -> Keypair {
let public = PublicKey(VerifyingKey::from(&secret.0));
Keypair { secret, public }
}
}
impl From<Keypair> for SecretKey {
fn from(kp: Keypair) -> SecretKey {
kp.secret
}
}
#[derive(Clone)]
pub struct SecretKey(SigningKey);
impl SecretKey {
pub fn generate() -> SecretKey {
SecretKey(SigningKey::random(rand::thread_rng()))
}
pub fn sign(&self, msg: &[u8]) -> Vec<u8> {
self.0.sign(msg).to_der().as_bytes().to_owned()
}
pub fn to_bytes(&self) -> Vec<u8> {
self.0.to_bytes().to_vec()
}
pub fn from_bytes(buf: &[u8]) -> Result<Self, DecodingError> {
SigningKey::from_bytes(buf)
.map_err(|err| DecodingError::new("failed to parse ecdsa p256 secret key").source(err))
.map(SecretKey)
}
}
impl fmt::Debug for SecretKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "SecretKey")
}
}
#[derive(Clone, PartialEq, Eq)]
pub struct PublicKey(VerifyingKey);
impl PublicKey {
pub fn verify(&self, msg: &[u8], sig: &[u8]) -> bool {
let sig = match Signature::from_der(sig) {
Ok(sig) => sig,
Err(_) => return false,
};
self.0.verify(msg, &sig).is_ok()
}
pub fn from_bytes(k: &[u8]) -> Result<PublicKey, DecodingError> {
let enc_pt = EncodedPoint::from_bytes(k).map_err(|_| {
DecodingError::new("failed to parse ecdsa p256 public key, bad point encoding")
})?;
VerifyingKey::from_encoded_point(&enc_pt)
.map_err(|err| DecodingError::new("failed to parse ecdsa p256 public key").source(err))
.map(PublicKey)
}
pub fn to_bytes(&self) -> Vec<u8> {
self.0.to_encoded_point(false).as_bytes().to_owned()
}
pub fn encode_der(&self) -> Vec<u8> {
let buf = self.to_bytes();
Self::add_asn1_header(&buf)
}
pub fn decode_der(k: &[u8]) -> Result<PublicKey, DecodingError> {
let buf = Self::del_asn1_header(k).ok_or_else(|| {
DecodingError::new("failed to parse asn.1 encoded ecdsa p256 public key")
})?;
Self::from_bytes(&buf)
}
const EC_PUBLIC_KEY_OID: [u8; 9] = [0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01];
const SECP_256_R1_OID: [u8; 10] = [0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07];
fn add_asn1_header(key_buf: &[u8]) -> Vec<u8> {
let mut asn1_buf = vec![
0x30,
0x00,
0x30,
(Self::EC_PUBLIC_KEY_OID.len() + Self::SECP_256_R1_OID.len()) as u8,
];
asn1_buf.extend_from_slice(&Self::EC_PUBLIC_KEY_OID);
asn1_buf.extend_from_slice(&Self::SECP_256_R1_OID);
asn1_buf.extend_from_slice(&[0x03, (key_buf.len() + 1) as u8, 0x00]);
asn1_buf.extend_from_slice(key_buf);
asn1_buf[1] = (asn1_buf.len() - 2) as u8;
asn1_buf
}
fn del_asn1_header(asn1_buf: &[u8]) -> Option<&[u8]> {
let oids_len = Self::EC_PUBLIC_KEY_OID.len() + Self::SECP_256_R1_OID.len();
let asn1_head = asn1_buf.get(..4)?;
let oids_buf = asn1_buf.get(4..4 + oids_len)?;
let bitstr_head = asn1_buf.get(4 + oids_len..4 + oids_len + 3)?;
if asn1_head[0] != 0x30
|| asn1_head[2] != 0x30
|| asn1_head[3] as usize != oids_len
|| &oids_buf[..Self::EC_PUBLIC_KEY_OID.len()] != &Self::EC_PUBLIC_KEY_OID
|| &oids_buf[Self::EC_PUBLIC_KEY_OID.len()..] != &Self::SECP_256_R1_OID
|| bitstr_head[0] != 0x03
|| bitstr_head[2] != 0x00
{
return None;
}
let key_len = bitstr_head[1].checked_sub(1)? as usize;
let key_buf = asn1_buf.get(4 + oids_len + 3..4 + oids_len + 3 + key_len as usize)?;
Some(key_buf)
}
}
impl fmt::Debug for PublicKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("PublicKey(asn.1 uncompressed): ")?;
for byte in &self.encode_der() {
write!(f, "{:x}", byte)?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn sign_verify() {
let pair = Keypair::generate();
let pk = pair.public();
let msg = "hello world".as_bytes();
let sig = pair.sign(msg);
assert!(pk.verify(msg, &sig));
let mut invalid_sig = sig.clone();
invalid_sig[3..6].copy_from_slice(&[10, 23, 42]);
assert!(!pk.verify(msg, &invalid_sig));
let invalid_msg = "h3ll0 w0rld".as_bytes();
assert!(!pk.verify(invalid_msg, &sig));
}
}