1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! A node's network identity keys.
//!
//! Such identity keys can be randomly generated on every startup,
//! but using already existing, fixed keys is usually required.
//! Though libp2p uses other crates (e.g. `ed25519_dalek`) internally,
//! such details are not exposed as part of libp2p's public interface
//! to keep them easily upgradable or replaceable (e.g. to `ed25519_zebra`).
//! Consequently, keys of external ed25519 or secp256k1 crates cannot be
//! directly converted into libp2p network identities.
//! Instead, loading fixed keys must use the standard, thus more portable
//! binary representation of the specific key type
//! (e.g. [ed25519 binary format](https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5)).
//! All key types have functions to enable conversion to/from their binary representations.

#[cfg(feature = "ecdsa")]
pub mod ecdsa;
pub mod ed25519;
#[cfg(all(feature = "rsa", not(target_arch = "wasm32")))]
pub mod rsa;
#[cfg(feature = "secp256k1")]
pub mod secp256k1;

pub mod error;

use self::error::*;
use crate::{keys_proto, PeerId};
use std::convert::{TryFrom, TryInto};

/// Identity keypair of a node.
///
/// # Example: Generating RSA keys with OpenSSL
///
/// ```text
/// openssl genrsa -out private.pem 2048
/// openssl pkcs8 -in private.pem -inform PEM -topk8 -out private.pk8 -outform DER -nocrypt
/// rm private.pem      # optional
/// ```
///
/// Loading the keys:
///
/// ```text
/// let mut bytes = std::fs::read("private.pk8").unwrap();
/// let keypair = Keypair::rsa_from_pkcs8(&mut bytes);
/// ```
///
#[derive(Debug, Clone)]
#[allow(clippy::large_enum_variant)]
pub enum Keypair {
    /// An Ed25519 keypair.
    Ed25519(ed25519::Keypair),
    /// An RSA keypair.
    #[cfg(all(feature = "rsa", not(target_arch = "wasm32")))]
    Rsa(rsa::Keypair),
    /// A Secp256k1 keypair.
    #[cfg(feature = "secp256k1")]
    Secp256k1(secp256k1::Keypair),
    /// An ECDSA keypair.
    #[cfg(feature = "ecdsa")]
    Ecdsa(ecdsa::Keypair),
}

impl Keypair {
    /// Generate a new Ed25519 keypair.
    pub fn generate_ed25519() -> Keypair {
        Keypair::Ed25519(ed25519::Keypair::generate())
    }

    /// Generate a new Secp256k1 keypair.
    #[cfg(feature = "secp256k1")]
    pub fn generate_secp256k1() -> Keypair {
        Keypair::Secp256k1(secp256k1::Keypair::generate())
    }

    /// Generate a new ECDSA keypair.
    #[cfg(feature = "ecdsa")]
    pub fn generate_ecdsa() -> Keypair {
        Keypair::Ecdsa(ecdsa::Keypair::generate())
    }

    /// Decode an keypair from a DER-encoded secret key in PKCS#8 PrivateKeyInfo
    /// format (i.e. unencrypted) as defined in [RFC5208].
    ///
    /// [RFC5208]: https://tools.ietf.org/html/rfc5208#section-5
    #[cfg(all(feature = "rsa", not(target_arch = "wasm32")))]
    pub fn rsa_from_pkcs8(pkcs8_der: &mut [u8]) -> Result<Keypair, DecodingError> {
        rsa::Keypair::from_pkcs8(pkcs8_der).map(Keypair::Rsa)
    }

    /// Decode a keypair from a DER-encoded Secp256k1 secret key in an ECPrivateKey
    /// structure as defined in [RFC5915].
    ///
    /// [RFC5915]: https://tools.ietf.org/html/rfc5915
    #[cfg(feature = "secp256k1")]
    pub fn secp256k1_from_der(der: &mut [u8]) -> Result<Keypair, DecodingError> {
        secp256k1::SecretKey::from_der(der)
            .map(|sk| Keypair::Secp256k1(secp256k1::Keypair::from(sk)))
    }

    /// Sign a message using the private key of this keypair, producing
    /// a signature that can be verified using the corresponding public key.
    pub fn sign(&self, msg: &[u8]) -> Result<Vec<u8>, SigningError> {
        use Keypair::*;
        match self {
            Ed25519(ref pair) => Ok(pair.sign(msg)),
            #[cfg(all(feature = "rsa", not(target_arch = "wasm32")))]
            Rsa(ref pair) => pair.sign(msg),
            #[cfg(feature = "secp256k1")]
            Secp256k1(ref pair) => pair.secret().sign(msg),
            #[cfg(feature = "ecdsa")]
            Ecdsa(ref pair) => Ok(pair.secret().sign(msg)),
        }
    }

    /// Get the public key of this keypair.
    pub fn public(&self) -> PublicKey {
        use Keypair::*;
        match self {
            Ed25519(pair) => PublicKey::Ed25519(pair.public()),
            #[cfg(all(feature = "rsa", not(target_arch = "wasm32")))]
            Rsa(pair) => PublicKey::Rsa(pair.public()),
            #[cfg(feature = "secp256k1")]
            Secp256k1(pair) => PublicKey::Secp256k1(pair.public().clone()),
            #[cfg(feature = "ecdsa")]
            Ecdsa(pair) => PublicKey::Ecdsa(pair.public().clone()),
        }
    }

    /// Encode a private key as protobuf structure.
    pub fn to_protobuf_encoding(&self) -> Result<Vec<u8>, DecodingError> {
        use prost::Message;

        let pk = match self {
            Self::Ed25519(data) => keys_proto::PrivateKey {
                r#type: keys_proto::KeyType::Ed25519.into(),
                data: data.encode().into(),
            },
            #[cfg(all(feature = "rsa", not(target_arch = "wasm32")))]
            Self::Rsa(_) => return Err(DecodingError::encoding_unsupported("RSA")),
            #[cfg(feature = "secp256k1")]
            Self::Secp256k1(_) => return Err(DecodingError::encoding_unsupported("secp256k1")),
            #[cfg(feature = "ecdsa")]
            Self::Ecdsa(_) => return Err(DecodingError::encoding_unsupported("ECDSA")),
        };

        Ok(pk.encode_to_vec())
    }

    /// Decode a private key from a protobuf structure and parse it as a [`Keypair`].
    pub fn from_protobuf_encoding(bytes: &[u8]) -> Result<Keypair, DecodingError> {
        use prost::Message;

        let mut private_key = keys_proto::PrivateKey::decode(bytes)
            .map_err(|e| DecodingError::bad_protobuf("private key bytes", e))
            .map(zeroize::Zeroizing::new)?;

        let key_type = keys_proto::KeyType::from_i32(private_key.r#type)
            .ok_or_else(|| DecodingError::unknown_key_type(private_key.r#type))?;

        match key_type {
            keys_proto::KeyType::Ed25519 => {
                ed25519::Keypair::decode(&mut private_key.data).map(Keypair::Ed25519)
            }
            keys_proto::KeyType::Rsa => Err(DecodingError::decoding_unsupported("RSA")),
            keys_proto::KeyType::Secp256k1 => Err(DecodingError::decoding_unsupported("secp256k1")),
            keys_proto::KeyType::Ecdsa => Err(DecodingError::decoding_unsupported("ECDSA")),
        }
    }
}

impl zeroize::Zeroize for keys_proto::PrivateKey {
    fn zeroize(&mut self) {
        self.r#type.zeroize();
        self.data.zeroize();
    }
}

/// The public key of a node's identity keypair.
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum PublicKey {
    /// A public Ed25519 key.
    Ed25519(ed25519::PublicKey),
    #[cfg(all(feature = "rsa", not(target_arch = "wasm32")))]
    /// A public RSA key.
    Rsa(rsa::PublicKey),
    #[cfg(feature = "secp256k1")]
    /// A public Secp256k1 key.
    Secp256k1(secp256k1::PublicKey),
    /// A public ECDSA key.
    #[cfg(feature = "ecdsa")]
    Ecdsa(ecdsa::PublicKey),
}

impl PublicKey {
    /// Verify a signature for a message using this public key, i.e. check
    /// that the signature has been produced by the corresponding
    /// private key (authenticity), and that the message has not been
    /// tampered with (integrity).
    #[must_use]
    pub fn verify(&self, msg: &[u8], sig: &[u8]) -> bool {
        use PublicKey::*;
        match self {
            Ed25519(pk) => pk.verify(msg, sig),
            #[cfg(all(feature = "rsa", not(target_arch = "wasm32")))]
            Rsa(pk) => pk.verify(msg, sig),
            #[cfg(feature = "secp256k1")]
            Secp256k1(pk) => pk.verify(msg, sig),
            #[cfg(feature = "ecdsa")]
            Ecdsa(pk) => pk.verify(msg, sig),
        }
    }

    /// Encode the public key into a protobuf structure for storage or
    /// exchange with other nodes.
    pub fn to_protobuf_encoding(&self) -> Vec<u8> {
        use prost::Message;

        let public_key = keys_proto::PublicKey::from(self);

        let mut buf = Vec::with_capacity(public_key.encoded_len());
        public_key
            .encode(&mut buf)
            .expect("Vec<u8> provides capacity as needed");
        buf
    }

    /// Decode a public key from a protobuf structure, e.g. read from storage
    /// or received from another node.
    pub fn from_protobuf_encoding(bytes: &[u8]) -> Result<PublicKey, DecodingError> {
        use prost::Message;

        let pubkey = keys_proto::PublicKey::decode(bytes)
            .map_err(|e| DecodingError::bad_protobuf("public key bytes", e))?;

        pubkey.try_into()
    }

    /// Convert the `PublicKey` into the corresponding `PeerId`.
    pub fn to_peer_id(&self) -> PeerId {
        self.into()
    }
}

impl From<&PublicKey> for keys_proto::PublicKey {
    fn from(key: &PublicKey) -> Self {
        match key {
            PublicKey::Ed25519(key) => keys_proto::PublicKey {
                r#type: keys_proto::KeyType::Ed25519 as i32,
                data: key.encode().to_vec(),
            },
            #[cfg(all(feature = "rsa", not(target_arch = "wasm32")))]
            PublicKey::Rsa(key) => keys_proto::PublicKey {
                r#type: keys_proto::KeyType::Rsa as i32,
                data: key.encode_x509(),
            },
            #[cfg(feature = "secp256k1")]
            PublicKey::Secp256k1(key) => keys_proto::PublicKey {
                r#type: keys_proto::KeyType::Secp256k1 as i32,
                data: key.encode().to_vec(),
            },
            #[cfg(feature = "ecdsa")]
            PublicKey::Ecdsa(key) => keys_proto::PublicKey {
                r#type: keys_proto::KeyType::Ecdsa as i32,
                data: key.encode_der(),
            },
        }
    }
}

impl TryFrom<keys_proto::PublicKey> for PublicKey {
    type Error = DecodingError;

    fn try_from(pubkey: keys_proto::PublicKey) -> Result<Self, Self::Error> {
        let key_type = keys_proto::KeyType::from_i32(pubkey.r#type)
            .ok_or_else(|| DecodingError::unknown_key_type(pubkey.r#type))?;

        match key_type {
            keys_proto::KeyType::Ed25519 => {
                ed25519::PublicKey::decode(&pubkey.data).map(PublicKey::Ed25519)
            }
            #[cfg(all(feature = "rsa", not(target_arch = "wasm32")))]
            keys_proto::KeyType::Rsa => {
                rsa::PublicKey::decode_x509(&pubkey.data).map(PublicKey::Rsa)
            }
            #[cfg(any(not(feature = "rsa"), target_arch = "wasm32"))]
            keys_proto::KeyType::Rsa => {
                log::debug!("support for RSA was disabled at compile-time");
                Err(DecodingError::missing_feature("rsa"))
            }
            #[cfg(feature = "secp256k1")]
            keys_proto::KeyType::Secp256k1 => {
                secp256k1::PublicKey::decode(&pubkey.data).map(PublicKey::Secp256k1)
            }
            #[cfg(not(feature = "secp256k1"))]
            keys_proto::KeyType::Secp256k1 => {
                log::debug!("support for secp256k1 was disabled at compile-time");
                Err(DecodingError::missing_feature("secp256k1"))
            }
            #[cfg(feature = "ecdsa")]
            keys_proto::KeyType::Ecdsa => {
                ecdsa::PublicKey::decode_der(&pubkey.data).map(PublicKey::Ecdsa)
            }
            #[cfg(not(feature = "ecdsa"))]
            keys_proto::KeyType::Ecdsa => {
                log::debug!("support for ECDSA was disabled at compile-time");
                Err(DecodingError::missing_feature("ecdsa"))
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::str::FromStr;

    #[test]
    fn keypair_protobuf_roundtrip() {
        let expected_keypair = Keypair::generate_ed25519();
        let expected_peer_id = expected_keypair.public().to_peer_id();

        let encoded = expected_keypair.to_protobuf_encoding().unwrap();

        let keypair = Keypair::from_protobuf_encoding(&encoded).unwrap();
        let peer_id = keypair.public().to_peer_id();

        assert_eq!(expected_peer_id, peer_id);
    }

    #[test]
    fn keypair_from_protobuf_encoding() {
        // E.g. retrieved from an IPFS config file.
        let base_64_encoded = "CAESQL6vdKQuznQosTrW7FWI9At+XX7EBf0BnZLhb6w+N+XSQSdfInl6c7U4NuxXJlhKcRBlBw9d0tj2dfBIVf6mcPA=";
        let expected_peer_id =
            PeerId::from_str("12D3KooWEChVMMMzV8acJ53mJHrw1pQ27UAGkCxWXLJutbeUMvVu").unwrap();

        let encoded = base64::decode(base_64_encoded).unwrap();

        let keypair = Keypair::from_protobuf_encoding(&encoded).unwrap();
        let peer_id = keypair.public().to_peer_id();

        assert_eq!(expected_peer_id, peer_id);
    }

    #[test]
    fn public_key_implements_hash() {
        use std::hash::Hash;

        fn assert_implements_hash<T: Hash>() {}

        assert_implements_hash::<PublicKey>();
    }

    #[test]
    fn public_key_implements_ord() {
        use std::cmp::Ord;

        fn assert_implements_ord<T: Ord>() {}

        assert_implements_ord::<PublicKey>();
    }
}