1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Ed25519 keys.
use super::error::DecodingError;
use core::cmp;
use core::fmt;
use core::hash;
use ed25519_dalek::{self as ed25519, Signer as _, Verifier as _};
use std::convert::TryFrom;
use zeroize::Zeroize;
/// An Ed25519 keypair.
#[derive(Clone)]
pub struct Keypair(ed25519::SigningKey);
impl Keypair {
/// Generate a new random Ed25519 keypair.
pub fn generate() -> Keypair {
Keypair::from(SecretKey::generate())
}
/// Encode the keypair into a byte array by concatenating the bytes
/// of the secret scalar and the compressed public point,
/// an informal standard for encoding Ed25519 keypairs.
#[deprecated(since = "0.2.0", note = "Renamed to `Keypair::to_bytes`")]
pub fn encode(&self) -> [u8; 64] {
self.to_bytes()
}
/// Convert the keypair into a byte array by concatenating the bytes
/// of the secret scalar and the compressed public point,
/// an informal standard for encoding Ed25519 keypairs.
pub fn to_bytes(&self) -> [u8; 64] {
self.0.to_keypair_bytes()
}
/// Decode a keypair from the [binary format](https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5)
/// produced by [`Keypair::to_bytes`], zeroing the input on success.
///
/// Note that this binary format is the same as `ed25519_dalek`'s and `ed25519_zebra`'s.
#[deprecated(
since = "0.2.0",
note = "This method name does not follow Rust naming conventions, use `Keypair::try_from_bytes` instead."
)]
pub fn decode(kp: &mut [u8]) -> Result<Keypair, DecodingError> {
Self::try_from_bytes(kp)
}
/// Try to parse a keypair from the [binary format](https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5)
/// produced by [`Keypair::to_bytes`], zeroing the input on success.
///
/// Note that this binary format is the same as `ed25519_dalek`'s and `ed25519_zebra`'s.
pub fn try_from_bytes(kp: &mut [u8]) -> Result<Keypair, DecodingError> {
let bytes = <[u8; 64]>::try_from(&*kp)
.map_err(|e| DecodingError::failed_to_parse("Ed25519 keypair", e))?;
ed25519::SigningKey::from_keypair_bytes(&bytes)
.map(|k| {
kp.zeroize();
Keypair(k)
})
.map_err(|e| DecodingError::failed_to_parse("Ed25519 keypair", e))
}
/// Sign a message using the private key of this keypair.
pub fn sign(&self, msg: &[u8]) -> Vec<u8> {
self.0.sign(msg).to_bytes().to_vec()
}
/// Get the public key of this keypair.
pub fn public(&self) -> PublicKey {
PublicKey(self.0.verifying_key())
}
/// Get the secret key of this keypair.
pub fn secret(&self) -> SecretKey {
SecretKey(self.0.to_bytes())
}
}
impl fmt::Debug for Keypair {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Keypair")
.field("public", &self.0.verifying_key())
.finish()
}
}
/// Demote an Ed25519 keypair to a secret key.
impl From<Keypair> for SecretKey {
fn from(kp: Keypair) -> SecretKey {
SecretKey(kp.0.to_bytes())
}
}
/// Promote an Ed25519 secret key into a keypair.
impl From<SecretKey> for Keypair {
fn from(sk: SecretKey) -> Keypair {
let signing = ed25519::SigningKey::from_bytes(&sk.0);
Keypair(signing)
}
}
/// An Ed25519 public key.
#[derive(Eq, Clone)]
pub struct PublicKey(ed25519::VerifyingKey);
impl fmt::Debug for PublicKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("PublicKey(compressed): ")?;
for byte in self.0.as_bytes() {
write!(f, "{byte:x}")?;
}
Ok(())
}
}
impl cmp::PartialEq for PublicKey {
fn eq(&self, other: &Self) -> bool {
self.0.as_bytes().eq(other.0.as_bytes())
}
}
impl hash::Hash for PublicKey {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.0.as_bytes().hash(state);
}
}
impl cmp::PartialOrd for PublicKey {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
self.0.as_bytes().partial_cmp(other.0.as_bytes())
}
}
impl cmp::Ord for PublicKey {
fn cmp(&self, other: &Self) -> cmp::Ordering {
self.0.as_bytes().cmp(other.0.as_bytes())
}
}
impl PublicKey {
/// Verify the Ed25519 signature on a message using the public key.
pub fn verify(&self, msg: &[u8], sig: &[u8]) -> bool {
ed25519::Signature::try_from(sig)
.and_then(|s| self.0.verify(msg, &s))
.is_ok()
}
/// Encode the public key into a byte array in compressed form, i.e.
/// where one coordinate is represented by a single bit.
#[deprecated(
since = "0.2.0",
note = "Renamed to `PublicKey::to_bytes` to reflect actual behaviour."
)]
pub fn encode(&self) -> [u8; 32] {
self.to_bytes()
}
/// Convert the public key to a byte array in compressed form, i.e.
/// where one coordinate is represented by a single bit.
pub fn to_bytes(&self) -> [u8; 32] {
self.0.to_bytes()
}
/// Decode a public key from a byte array as produced by `to_bytes`.
#[deprecated(
since = "0.2.0",
note = "This method name does not follow Rust naming conventions, use `PublicKey::try_from_bytes` instead."
)]
pub fn decode(k: &[u8]) -> Result<PublicKey, DecodingError> {
Self::try_from_bytes(k)
}
/// Try to parse a public key from a byte array containing the actual key as produced by `to_bytes`.
pub fn try_from_bytes(k: &[u8]) -> Result<PublicKey, DecodingError> {
let k = <[u8; 32]>::try_from(k)
.map_err(|e| DecodingError::failed_to_parse("Ed25519 public key", e))?;
ed25519::VerifyingKey::from_bytes(&k)
.map_err(|e| DecodingError::failed_to_parse("Ed25519 public key", e))
.map(PublicKey)
}
}
/// An Ed25519 secret key.
#[derive(Clone)]
pub struct SecretKey(ed25519::SecretKey);
/// View the bytes of the secret key.
impl AsRef<[u8]> for SecretKey {
fn as_ref(&self) -> &[u8] {
&self.0[..]
}
}
impl fmt::Debug for SecretKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "SecretKey")
}
}
impl SecretKey {
/// Generate a new Ed25519 secret key.
pub fn generate() -> SecretKey {
let signing = ed25519::SigningKey::generate(&mut rand::rngs::OsRng);
SecretKey(signing.to_bytes())
}
/// Create an Ed25519 secret key from a byte slice, zeroing the input on success.
/// If the bytes do not constitute a valid Ed25519 secret key, an error is
/// returned.
#[deprecated(
since = "0.2.0",
note = "This method name does not follow Rust naming conventions, use `SecretKey::try_from_bytes` instead."
)]
#[allow(unused_mut)]
pub fn from_bytes(mut sk_bytes: impl AsMut<[u8]>) -> Result<SecretKey, DecodingError> {
Self::try_from_bytes(sk_bytes)
}
/// Try to parse an Ed25519 secret key from a byte slice
/// containing the actual key, zeroing the input on success.
/// If the bytes do not constitute a valid Ed25519 secret key, an error is
/// returned.
pub fn try_from_bytes(mut sk_bytes: impl AsMut<[u8]>) -> Result<SecretKey, DecodingError> {
let sk_bytes = sk_bytes.as_mut();
let secret = <[u8; 32]>::try_from(&*sk_bytes)
.map_err(|e| DecodingError::failed_to_parse("Ed25519 secret key", e))?;
sk_bytes.zeroize();
Ok(SecretKey(secret))
}
}
#[cfg(test)]
mod tests {
use super::*;
use quickcheck::*;
fn eq_keypairs(kp1: &Keypair, kp2: &Keypair) -> bool {
kp1.public() == kp2.public() && kp1.0.to_bytes() == kp2.0.to_bytes()
}
#[test]
fn ed25519_keypair_encode_decode() {
fn prop() -> bool {
let kp1 = Keypair::generate();
let mut kp1_enc = kp1.to_bytes();
let kp2 = Keypair::try_from_bytes(&mut kp1_enc).unwrap();
eq_keypairs(&kp1, &kp2) && kp1_enc.iter().all(|b| *b == 0)
}
QuickCheck::new().tests(10).quickcheck(prop as fn() -> _);
}
#[test]
fn ed25519_keypair_from_secret() {
fn prop() -> bool {
let kp1 = Keypair::generate();
let mut sk = kp1.0.to_bytes();
let kp2 = Keypair::from(SecretKey::try_from_bytes(&mut sk).unwrap());
eq_keypairs(&kp1, &kp2) && sk == [0u8; 32]
}
QuickCheck::new().tests(10).quickcheck(prop as fn() -> _);
}
#[test]
fn ed25519_signature() {
let kp = Keypair::generate();
let pk = kp.public();
let msg = "hello world".as_bytes();
let sig = kp.sign(msg);
assert!(pk.verify(msg, &sig));
let mut invalid_sig = sig.clone();
invalid_sig[3..6].copy_from_slice(&[10, 23, 42]);
assert!(!pk.verify(msg, &invalid_sig));
let invalid_msg = "h3ll0 w0rld".as_bytes();
assert!(!pk.verify(invalid_msg, &sig));
}
}