1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Secp256k1 keys.
use super::error::{DecodingError, SigningError};
use asn1_der::typed::{DerDecodable, Sequence};
use core::cmp;
use core::fmt;
use core::hash;
use libsecp256k1::{Message, Signature};
use sha2::{Digest as ShaDigestTrait, Sha256};
use zeroize::Zeroize;
/// A Secp256k1 keypair.
#[derive(Clone)]
pub struct Keypair {
secret: SecretKey,
public: PublicKey,
}
impl Keypair {
/// Generate a new sec256k1 `Keypair`.
pub fn generate() -> Keypair {
Keypair::from(SecretKey::generate())
}
/// Get the public key of this keypair.
pub fn public(&self) -> &PublicKey {
&self.public
}
/// Get the secret key of this keypair.
pub fn secret(&self) -> &SecretKey {
&self.secret
}
}
impl fmt::Debug for Keypair {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Keypair")
.field("public", &self.public)
.finish()
}
}
/// Promote a Secp256k1 secret key into a keypair.
impl From<SecretKey> for Keypair {
fn from(secret: SecretKey) -> Keypair {
let public = PublicKey(libsecp256k1::PublicKey::from_secret_key(&secret.0));
Keypair { secret, public }
}
}
/// Demote a Secp256k1 keypair into a secret key.
impl From<Keypair> for SecretKey {
fn from(kp: Keypair) -> SecretKey {
kp.secret
}
}
/// A Secp256k1 secret key.
#[derive(Clone)]
pub struct SecretKey(libsecp256k1::SecretKey);
impl fmt::Debug for SecretKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "SecretKey")
}
}
impl SecretKey {
/// Generate a new random Secp256k1 secret key.
pub fn generate() -> SecretKey {
SecretKey(libsecp256k1::SecretKey::random(&mut rand::thread_rng()))
}
/// Create a secret key from a byte slice, zeroing the slice on success.
/// If the bytes do not constitute a valid Secp256k1 secret key, an
/// error is returned.
///
/// Note that the expected binary format is the same as `libsecp256k1`'s.
#[deprecated(
since = "0.2.0",
note = "This method name does not follow Rust naming conventions, use `SecretKey::try_from_bytes` instead."
)]
#[allow(unused_mut)]
pub fn from_bytes(mut sk: impl AsMut<[u8]>) -> Result<SecretKey, DecodingError> {
Self::try_from_bytes(sk)
}
/// Create a secret key from a byte slice, zeroing the slice on success.
/// If the bytes do not constitute a valid Secp256k1 secret key, an
/// error is returned.
///
/// Note that the expected binary format is the same as `libsecp256k1`'s.
pub fn try_from_bytes(mut sk: impl AsMut<[u8]>) -> Result<SecretKey, DecodingError> {
let sk_bytes = sk.as_mut();
let secret = libsecp256k1::SecretKey::parse_slice(&*sk_bytes)
.map_err(|e| DecodingError::failed_to_parse("parse secp256k1 secret key", e))?;
sk_bytes.zeroize();
Ok(SecretKey(secret))
}
/// Decode a DER-encoded Secp256k1 secret key in an ECPrivateKey
/// structure as defined in [RFC5915], zeroing the input slice on success.
///
/// [RFC5915]: https://tools.ietf.org/html/rfc5915
pub fn from_der(mut der: impl AsMut<[u8]>) -> Result<SecretKey, DecodingError> {
// TODO: Stricter parsing.
let der_obj = der.as_mut();
let mut sk_bytes = Sequence::decode(der_obj)
.and_then(|seq| seq.get(1))
.and_then(Vec::load)
.map_err(|e| DecodingError::failed_to_parse("secp256k1 SecretKey bytes", e))?;
let sk = SecretKey::try_from_bytes(&mut sk_bytes)?;
sk_bytes.zeroize();
der_obj.zeroize();
Ok(sk)
}
/// Sign a message with this secret key, producing a DER-encoded
/// ECDSA signature, as defined in [RFC3278].
///
/// [RFC3278]: https://tools.ietf.org/html/rfc3278#section-8.2
pub fn sign(&self, msg: &[u8]) -> Result<Vec<u8>, SigningError> {
self.sign_hash(Sha256::digest(msg).as_ref())
}
/// Returns the raw bytes of the secret key.
pub fn to_bytes(&self) -> [u8; 32] {
self.0.serialize()
}
/// Sign a raw message of length 256 bits with this secret key, produces a DER-encoded
/// ECDSA signature.
pub fn sign_hash(&self, msg: &[u8]) -> Result<Vec<u8>, SigningError> {
let m = Message::parse_slice(msg)
.map_err(|_| SigningError::new("failed to parse secp256k1 digest"))?;
Ok(libsecp256k1::sign(&m, &self.0)
.0
.serialize_der()
.as_ref()
.into())
}
}
/// A Secp256k1 public key.
#[derive(Eq, Clone)]
pub struct PublicKey(libsecp256k1::PublicKey);
impl fmt::Debug for PublicKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("PublicKey(compressed): ")?;
for byte in &self.to_bytes() {
write!(f, "{byte:x}")?;
}
Ok(())
}
}
impl cmp::PartialEq for PublicKey {
fn eq(&self, other: &Self) -> bool {
self.to_bytes().eq(&other.to_bytes())
}
}
impl hash::Hash for PublicKey {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.to_bytes().hash(state);
}
}
impl cmp::PartialOrd for PublicKey {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
self.to_bytes().partial_cmp(&other.to_bytes())
}
}
impl cmp::Ord for PublicKey {
fn cmp(&self, other: &Self) -> cmp::Ordering {
self.to_bytes().cmp(&other.to_bytes())
}
}
impl PublicKey {
/// Verify the Secp256k1 signature on a message using the public key.
pub fn verify(&self, msg: &[u8], sig: &[u8]) -> bool {
self.verify_hash(Sha256::digest(msg).as_ref(), sig)
}
/// Verify the Secp256k1 DER-encoded signature on a raw 256-bit message using the public key.
pub fn verify_hash(&self, msg: &[u8], sig: &[u8]) -> bool {
Message::parse_slice(msg)
.and_then(|m| Signature::parse_der(sig).map(|s| libsecp256k1::verify(&m, &s, &self.0)))
.unwrap_or(false)
}
/// Encode the public key in compressed form, i.e. with one coordinate
/// represented by a single bit.
#[deprecated(since = "0.2.0", note = "Renamed to `PublicKey::to_bytes`.")]
pub fn encode(&self) -> [u8; 33] {
self.to_bytes()
}
/// Convert the public key to a byte buffer in compressed form, i.e. with one coordinate
/// represented by a single bit.
pub fn to_bytes(&self) -> [u8; 33] {
self.0.serialize_compressed()
}
/// Encode the public key in uncompressed form.
#[deprecated(
since = "0.2.0",
note = "Renamed to `PublicKey::to_bytes_uncompressed`."
)]
pub fn encode_uncompressed(&self) -> [u8; 65] {
self.to_bytes_uncompressed()
}
/// Convert the public key to a byte buffer in uncompressed form.
pub fn to_bytes_uncompressed(&self) -> [u8; 65] {
self.0.serialize()
}
/// Decode a public key from a byte slice in the the format produced
/// by `encode`.
#[deprecated(
since = "0.2.0",
note = "This method name does not follow Rust naming conventions, use `PublicKey::try_from_bytes` instead."
)]
pub fn decode(k: &[u8]) -> Result<PublicKey, DecodingError> {
Self::try_from_bytes(k)
}
/// Decode a public key from a byte slice in the the format produced
/// by `encode`.
pub fn try_from_bytes(k: &[u8]) -> Result<PublicKey, DecodingError> {
libsecp256k1::PublicKey::parse_slice(k, Some(libsecp256k1::PublicKeyFormat::Compressed))
.map_err(|e| DecodingError::failed_to_parse("secp256k1 public key", e))
.map(PublicKey)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn secp256k1_secret_from_bytes() {
let sk1 = SecretKey::generate();
let mut sk_bytes = [0; 32];
sk_bytes.copy_from_slice(&sk1.0.serialize()[..]);
let sk2 = SecretKey::try_from_bytes(&mut sk_bytes).unwrap();
assert_eq!(sk1.0.serialize(), sk2.0.serialize());
assert_eq!(sk_bytes, [0; 32]);
}
}