libp2p_identity/
ecdsa.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! ECDSA keys with secp256r1 curve support.

use super::error::DecodingError;
use core::cmp;
use core::fmt;
use core::hash;
use p256::{
    ecdsa::{
        signature::{Signer, Verifier},
        Signature, SigningKey, VerifyingKey,
    },
    EncodedPoint,
};
use sec1::{DecodeEcPrivateKey, EncodeEcPrivateKey};
use std::convert::Infallible;
use zeroize::Zeroize;

/// An ECDSA keypair generated using `secp256r1` curve.
#[derive(Clone)]
pub struct Keypair {
    secret: SecretKey,
    public: PublicKey,
}

impl Keypair {
    /// Generate a new random ECDSA keypair.
    #[cfg(feature = "rand")]
    pub fn generate() -> Keypair {
        Keypair::from(SecretKey::generate())
    }

    /// Sign a message using the private key of this keypair.
    pub fn sign(&self, msg: &[u8]) -> Vec<u8> {
        self.secret.sign(msg)
    }

    /// Get the public key of this keypair.
    pub fn public(&self) -> &PublicKey {
        &self.public
    }

    /// Get the secret key of this keypair.
    pub fn secret(&self) -> &SecretKey {
        &self.secret
    }
}

impl fmt::Debug for Keypair {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Keypair")
            .field("public", &self.public())
            .finish()
    }
}

/// Promote an ECDSA secret key into a keypair.
impl From<SecretKey> for Keypair {
    fn from(secret: SecretKey) -> Keypair {
        let public = PublicKey(VerifyingKey::from(&secret.0));
        Keypair { secret, public }
    }
}

/// Demote an ECDSA keypair to a secret key.
impl From<Keypair> for SecretKey {
    fn from(kp: Keypair) -> SecretKey {
        kp.secret
    }
}

/// An ECDSA secret key generated using `secp256r1` curve.
#[derive(Clone)]
pub struct SecretKey(SigningKey);

impl SecretKey {
    /// Generate a new random ECDSA secret key.
    #[cfg(feature = "rand")]
    pub fn generate() -> SecretKey {
        SecretKey(SigningKey::random(&mut rand::thread_rng()))
    }

    /// Sign a message with this secret key, producing a DER-encoded ECDSA signature.
    pub fn sign(&self, msg: &[u8]) -> Vec<u8> {
        let signature: p256::ecdsa::DerSignature = self.0.sign(msg);

        signature.as_bytes().to_owned()
    }

    /// Convert a secret key into a byte buffer containing raw scalar of the key.
    pub fn to_bytes(&self) -> Vec<u8> {
        self.0.to_bytes().to_vec()
    }

    /// Try to parse a secret key from a byte buffer containing raw scalar of the key.
    pub fn try_from_bytes(buf: impl AsRef<[u8]>) -> Result<SecretKey, DecodingError> {
        SigningKey::from_bytes(buf.as_ref().into())
            .map_err(|err| DecodingError::failed_to_parse("ecdsa p256 secret key", err))
            .map(SecretKey)
    }

    /// Encode the secret key into DER-encoded byte buffer.
    pub(crate) fn encode_der(&self) -> Vec<u8> {
        self.0
            .to_sec1_der()
            .expect("Encoding to pkcs#8 format to succeed")
            .to_bytes()
            .to_vec()
    }

    /// Try to decode a secret key from a DER-encoded byte buffer, zeroize the buffer on success.
    pub(crate) fn try_decode_der(buf: &mut [u8]) -> Result<Self, DecodingError> {
        match SigningKey::from_sec1_der(buf) {
            Ok(key) => {
                buf.zeroize();
                Ok(SecretKey(key))
            }
            Err(e) => Err(DecodingError::failed_to_parse("ECDSA", e)),
        }
    }
}

impl fmt::Debug for SecretKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "SecretKey")
    }
}

/// An ECDSA public key.
#[derive(Clone, Eq, PartialOrd, Ord)]
pub struct PublicKey(VerifyingKey);

impl PublicKey {
    /// Verify an ECDSA signature on a message using the public key.
    pub fn verify(&self, msg: &[u8], sig: &[u8]) -> bool {
        let Ok(sig) = Signature::from_der(sig) else {
            return false;
        };
        self.0.verify(msg, &sig).is_ok()
    }

    /// Try to parse a public key from a byte buffer containing raw components of a key with or without compression.
    pub fn try_from_bytes(k: &[u8]) -> Result<PublicKey, DecodingError> {
        let enc_pt = EncodedPoint::from_bytes(k)
            .map_err(|e| DecodingError::failed_to_parse("ecdsa p256 encoded point", e))?;

        VerifyingKey::from_encoded_point(&enc_pt)
            .map_err(|err| DecodingError::failed_to_parse("ecdsa p256 public key", err))
            .map(PublicKey)
    }

    /// Convert a public key into a byte buffer containing raw components of the key without compression.
    pub fn to_bytes(&self) -> Vec<u8> {
        self.0.to_encoded_point(false).as_bytes().to_owned()
    }

    /// Encode a public key into a DER encoded byte buffer as defined by SEC1 standard.
    pub fn encode_der(&self) -> Vec<u8> {
        let buf = self.to_bytes();
        Self::add_asn1_header(&buf)
    }

    /// Try to decode a public key from a DER encoded byte buffer as defined by SEC1 standard.
    pub fn try_decode_der(k: &[u8]) -> Result<PublicKey, DecodingError> {
        let buf = Self::del_asn1_header(k).ok_or_else(|| {
            DecodingError::failed_to_parse::<Infallible, _>(
                "ASN.1-encoded ecdsa p256 public key",
                None,
            )
        })?;
        Self::try_from_bytes(buf)
    }

    // ecPublicKey (ANSI X9.62 public key type) OID: 1.2.840.10045.2.1
    const EC_PUBLIC_KEY_OID: [u8; 9] = [0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01];
    // secp256r1 OID: 1.2.840.10045.3.1.7
    const SECP_256_R1_OID: [u8; 10] = [0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07];

    // Add ASN1 header.
    fn add_asn1_header(key_buf: &[u8]) -> Vec<u8> {
        // ASN.1 struct type and length.
        let mut asn1_buf = vec![
            0x30,
            0x00,
            0x30,
            (Self::EC_PUBLIC_KEY_OID.len() + Self::SECP_256_R1_OID.len()) as u8,
        ];
        // Append OIDs.
        asn1_buf.extend_from_slice(&Self::EC_PUBLIC_KEY_OID);
        asn1_buf.extend_from_slice(&Self::SECP_256_R1_OID);
        // Append key bitstring type and length.
        asn1_buf.extend_from_slice(&[0x03, (key_buf.len() + 1) as u8, 0x00]);
        // Append key bitstring value.
        asn1_buf.extend_from_slice(key_buf);
        // Update overall length field.
        asn1_buf[1] = (asn1_buf.len() - 2) as u8;

        asn1_buf
    }

    // Check and remove ASN.1 header.
    fn del_asn1_header(asn1_buf: &[u8]) -> Option<&[u8]> {
        let oids_len = Self::EC_PUBLIC_KEY_OID.len() + Self::SECP_256_R1_OID.len();
        let asn1_head = asn1_buf.get(..4)?;
        let oids_buf = asn1_buf.get(4..4 + oids_len)?;
        let bitstr_head = asn1_buf.get(4 + oids_len..4 + oids_len + 3)?;

        // Sanity check
        if asn1_head[0] != 0x30
            || asn1_head[2] != 0x30
            || asn1_head[3] as usize != oids_len
            || oids_buf[..Self::EC_PUBLIC_KEY_OID.len()] != Self::EC_PUBLIC_KEY_OID
            || oids_buf[Self::EC_PUBLIC_KEY_OID.len()..] != Self::SECP_256_R1_OID
            || bitstr_head[0] != 0x03
            || bitstr_head[2] != 0x00
        {
            return None;
        }

        let key_len = bitstr_head[1].checked_sub(1)? as usize;
        let key_buf = asn1_buf.get(4 + oids_len + 3..4 + oids_len + 3 + key_len)?;
        Some(key_buf)
    }
}

impl fmt::Debug for PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("PublicKey(asn.1 uncompressed): ")?;
        for byte in &self.encode_der() {
            write!(f, "{byte:x}")?;
        }
        Ok(())
    }
}

impl cmp::PartialEq for PublicKey {
    fn eq(&self, other: &Self) -> bool {
        self.to_bytes().eq(&other.to_bytes())
    }
}

impl hash::Hash for PublicKey {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        self.to_bytes().hash(state);
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[cfg(feature = "rand")]
    fn sign_verify() {
        let pair = Keypair::generate();
        let pk = pair.public();

        let msg = "hello world".as_bytes();
        let sig = pair.sign(msg);
        assert!(pk.verify(msg, &sig));

        let mut invalid_sig = sig.clone();
        invalid_sig[3..6].copy_from_slice(&[10, 23, 42]);
        assert!(!pk.verify(msg, &invalid_sig));

        let invalid_msg = "h3ll0 w0rld".as_bytes();
        assert!(!pk.verify(invalid_msg, &sig));
    }
}