1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

use crate::record;
use libp2p_core::multihash::Multihash;
use libp2p_identity::PeerId;
use sha2::digest::generic_array::{typenum::U32, GenericArray};
use sha2::{Digest, Sha256};
use std::borrow::Borrow;
use std::hash::{Hash, Hasher};
use uint::*;

construct_uint! {
    /// 256-bit unsigned integer.
    pub(super) struct U256(4);
}

/// A `Key` in the DHT keyspace with preserved preimage.
///
/// Keys in the DHT keyspace identify both the participating nodes, as well as
/// the records stored in the DHT.
///
/// `Key`s have an XOR metric as defined in the Kademlia paper, i.e. the bitwise XOR of
/// the hash digests, interpreted as an integer. See [`Key::distance`].
#[derive(Clone, Debug)]
pub struct Key<T> {
    preimage: T,
    bytes: KeyBytes,
}

impl<T> Key<T> {
    /// Constructs a new `Key` by running the given value through a random
    /// oracle.
    ///
    /// The preimage of type `T` is preserved. See [`Key::preimage`] and
    /// [`Key::into_preimage`].
    pub fn new(preimage: T) -> Key<T>
    where
        T: Borrow<[u8]>,
    {
        let bytes = KeyBytes::new(preimage.borrow());
        Key { preimage, bytes }
    }

    /// Borrows the preimage of the key.
    pub fn preimage(&self) -> &T {
        &self.preimage
    }

    /// Converts the key into its preimage.
    pub fn into_preimage(self) -> T {
        self.preimage
    }

    /// Computes the distance of the keys according to the XOR metric.
    pub fn distance<U>(&self, other: &U) -> Distance
    where
        U: AsRef<KeyBytes>,
    {
        self.bytes.distance(other)
    }

    /// Exposing the hashed bytes.
    pub fn hashed_bytes(&self) -> &[u8] {
        &self.bytes.0
    }

    /// Returns the uniquely determined key with the given distance to `self`.
    ///
    /// This implements the following equivalence:
    ///
    /// `self xor other = distance <==> other = self xor distance`
    pub fn for_distance(&self, d: Distance) -> KeyBytes {
        self.bytes.for_distance(d)
    }
}

impl<T> From<Key<T>> for KeyBytes {
    fn from(key: Key<T>) -> KeyBytes {
        key.bytes
    }
}

impl<const S: usize> From<Multihash<S>> for Key<Multihash<S>> {
    fn from(m: Multihash<S>) -> Self {
        let bytes = KeyBytes(Sha256::digest(m.to_bytes()));
        Key { preimage: m, bytes }
    }
}

impl From<PeerId> for Key<PeerId> {
    fn from(p: PeerId) -> Self {
        let bytes = KeyBytes(Sha256::digest(p.to_bytes()));
        Key { preimage: p, bytes }
    }
}

impl From<Vec<u8>> for Key<Vec<u8>> {
    fn from(b: Vec<u8>) -> Self {
        Key::new(b)
    }
}

impl From<record::Key> for Key<record::Key> {
    fn from(k: record::Key) -> Self {
        Key::new(k)
    }
}

impl<T> AsRef<KeyBytes> for Key<T> {
    fn as_ref(&self) -> &KeyBytes {
        &self.bytes
    }
}

impl<T, U> PartialEq<Key<U>> for Key<T> {
    fn eq(&self, other: &Key<U>) -> bool {
        self.bytes == other.bytes
    }
}

impl<T> Eq for Key<T> {}

impl<T> Hash for Key<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.bytes.0.hash(state);
    }
}

/// The raw bytes of a key in the DHT keyspace.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct KeyBytes(GenericArray<u8, U32>);

impl KeyBytes {
    /// Creates a new key in the DHT keyspace by running the given
    /// value through a random oracle.
    pub fn new<T>(value: T) -> Self
    where
        T: Borrow<[u8]>,
    {
        KeyBytes(Sha256::digest(value.borrow()))
    }

    /// Computes the distance of the keys according to the XOR metric.
    pub fn distance<U>(&self, other: &U) -> Distance
    where
        U: AsRef<KeyBytes>,
    {
        let a = U256::from(self.0.as_slice());
        let b = U256::from(other.as_ref().0.as_slice());
        Distance(a ^ b)
    }

    /// Returns the uniquely determined key with the given distance to `self`.
    ///
    /// This implements the following equivalence:
    ///
    /// `self xor other = distance <==> other = self xor distance`
    pub fn for_distance(&self, d: Distance) -> KeyBytes {
        let key_int = U256::from(self.0.as_slice()) ^ d.0;
        KeyBytes(GenericArray::from(<[u8; 32]>::from(key_int)))
    }
}

impl AsRef<KeyBytes> for KeyBytes {
    fn as_ref(&self) -> &KeyBytes {
        self
    }
}

/// A distance between two keys in the DHT keyspace.
#[derive(Copy, Clone, PartialEq, Eq, Default, PartialOrd, Ord, Debug)]
pub struct Distance(pub(super) U256);

impl Distance {
    /// Returns the integer part of the base 2 logarithm of the [`Distance`].
    ///
    /// Returns `None` if the distance is zero.
    pub fn ilog2(&self) -> Option<u32> {
        (256 - self.0.leading_zeros()).checked_sub(1)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::SHA_256_MH;
    use quickcheck::*;

    impl Arbitrary for Key<PeerId> {
        fn arbitrary(_: &mut Gen) -> Key<PeerId> {
            Key::from(PeerId::random())
        }
    }

    impl Arbitrary for Key<Multihash<64>> {
        fn arbitrary(g: &mut Gen) -> Key<Multihash<64>> {
            let hash: [u8; 32] = core::array::from_fn(|_| u8::arbitrary(g));
            Key::from(Multihash::wrap(SHA_256_MH, &hash).unwrap())
        }
    }

    #[test]
    fn identity() {
        fn prop(a: Key<PeerId>) -> bool {
            a.distance(&a) == Distance::default()
        }
        quickcheck(prop as fn(_) -> _)
    }

    #[test]
    fn symmetry() {
        fn prop(a: Key<PeerId>, b: Key<PeerId>) -> bool {
            a.distance(&b) == b.distance(&a)
        }
        quickcheck(prop as fn(_, _) -> _)
    }

    #[test]
    fn triangle_inequality() {
        fn prop(a: Key<PeerId>, b: Key<PeerId>, c: Key<PeerId>) -> TestResult {
            let ab = a.distance(&b);
            let bc = b.distance(&c);
            let (ab_plus_bc, overflow) = ab.0.overflowing_add(bc.0);
            if overflow {
                TestResult::discard()
            } else {
                TestResult::from_bool(a.distance(&c) <= Distance(ab_plus_bc))
            }
        }
        quickcheck(prop as fn(_, _, _) -> _)
    }

    #[test]
    fn unidirectionality() {
        fn prop(a: Key<PeerId>, b: Key<PeerId>) -> bool {
            let d = a.distance(&b);
            (0..100).all(|_| {
                let c = Key::from(PeerId::random());
                a.distance(&c) != d || b == c
            })
        }
        quickcheck(prop as fn(_, _) -> _)
    }
}