1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
// Copyright 2018 Parity Technologies (UK) Ltd. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. //! Implementation of a Kademlia routing table as used by a single peer //! participating in a Kademlia DHT. //! //! The entry point for the API of this module is a [`KBucketsTable`]. //! //! ## Pending Insertions //! //! When the bucket associated with the `Key` of an inserted entry is full //! but contains disconnected nodes, it accepts a [`PendingEntry`]. //! Pending entries are inserted lazily when their timeout is found to be expired //! upon querying the `KBucketsTable`. When that happens, the `KBucketsTable` records //! an [`AppliedPending`] result which must be consumed by calling [`take_applied_pending`] //! regularly and / or after performing lookup operations like [`entry`] and [`closest`]. //! //! [`entry`]: kbucket::KBucketsTable::entry //! [`closest`]: kbucket::KBucketsTable::closest //! [`AppliedPending`]: kbucket::AppliedPending //! [`KBucketsTable`]: kbucket::KBucketsTable //! [`take_applied_pending`]: kbucket::KBucketsTable::take_applied_pending //! [`PendingEntry`]: kbucket::PendingEntry // [Implementation Notes] // // 1. Routing Table Layout // // The routing table is currently implemented as a fixed-size "array" of // buckets, ordered by increasing distance relative to a local key // that identifies the local peer. This is an often-used, simplified // implementation that approximates the properties of the b-tree (or prefix tree) // implementation described in the full paper [0], whereby buckets are split on-demand. // This should be treated as an implementation detail, however, so that the // implementation may change in the future without breaking the API. // // 2. Replacement Cache // // In this implementation, the "replacement cache" for unresponsive peers // consists of a single entry per bucket. Furthermore, this implementation is // currently tailored to connection-oriented transports, meaning that the // "LRU"-based ordering of entries in a bucket is actually based on the last reported // connection status of the corresponding peers, from least-recently (dis)connected to // most-recently (dis)connected, and controlled through the `Entry` API. As a result, // the nodes in the buckets are not reordered as a result of RPC activity, but only as a // result of nodes being marked as connected or disconnected. In particular, // if a bucket is full and contains only entries for peers that are considered // connected, no pending entry is accepted. See the `bucket` submodule for // further details. // // [0]: https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf mod bucket; mod entry; mod key; pub use entry::*; use arrayvec::{self, ArrayVec}; use bucket::KBucket; use std::collections::VecDeque; use std::time::{Duration, Instant}; /// Maximum number of k-buckets. const NUM_BUCKETS: usize = 256; /// A `KBucketsTable` represents a Kademlia routing table. #[derive(Debug, Clone)] pub struct KBucketsTable<TPeerId, TVal> { /// The key identifying the local peer that owns the routing table. local_key: Key<TPeerId>, /// The buckets comprising the routing table. buckets: Vec<KBucket<TPeerId, TVal>>, /// The list of evicted entries that have been replaced with pending /// entries since the last call to [`KBucketsTable::take_applied_pending`]. applied_pending: VecDeque<AppliedPending<TPeerId, TVal>> } /// A (type-safe) index into a `KBucketsTable`, i.e. a non-negative integer in the /// interval `[0, NUM_BUCKETS)`. #[derive(Copy, Clone)] struct BucketIndex(usize); impl BucketIndex { /// Creates a new `BucketIndex` for a `Distance`. /// /// The given distance is interpreted as the distance from a `local_key` of /// a `KBucketsTable`. If the distance is zero, `None` is returned, in /// recognition of the fact that the only key with distance `0` to a /// `local_key` is the `local_key` itself, which does not belong in any /// bucket. fn new(d: &Distance) -> Option<BucketIndex> { (NUM_BUCKETS - d.0.leading_zeros() as usize) .checked_sub(1) .map(BucketIndex) } /// Gets the index value as an unsigned integer. fn get(&self) -> usize { self.0 } } impl<TPeerId, TVal> KBucketsTable<TPeerId, TVal> where TPeerId: Clone, { /// Creates a new, empty Kademlia routing table with entries partitioned /// into buckets as per the Kademlia protocol. /// /// The given `pending_timeout` specifies the duration after creation of /// a [`PendingEntry`] after which it becomes eligible for insertion into /// a full bucket, replacing the least-recently (dis)connected node. pub fn new(local_key: Key<TPeerId>, pending_timeout: Duration) -> Self { KBucketsTable { local_key, buckets: (0 .. NUM_BUCKETS).map(|_| KBucket::new(pending_timeout)).collect(), applied_pending: VecDeque::new() } } /// Returns the local key. pub fn local_key(&self) -> &Key<TPeerId> { &self.local_key } /// Returns an `Entry` for the given key, representing the state of the entry /// in the routing table. pub fn entry<'a>(&'a mut self, key: &'a Key<TPeerId>) -> Entry<'a, TPeerId, TVal> { let index = BucketIndex::new(&self.local_key.distance(key)); if let Some(i) = index { let bucket = &mut self.buckets[i.get()]; if let Some(applied) = bucket.apply_pending() { self.applied_pending.push_back(applied) } Entry::new(bucket, key) } else { Entry::SelfEntry } } /// Returns an iterator over all the entries in the routing table. pub fn iter<'a>(&'a mut self) -> impl Iterator<Item = EntryRefView<'a, TPeerId, TVal>> { let applied_pending = &mut self.applied_pending; self.buckets.iter_mut().flat_map(move |table| { if let Some(applied) = table.apply_pending() { applied_pending.push_back(applied) } let table = &*table; table.iter().map(move |(n, status)| { EntryRefView { node: NodeRefView { key: &n.key, value: &n.value }, status } }) }) } /// Returns a by-reference iterator over all buckets. /// /// The buckets are ordered by proximity to the `local_key`, i.e. the first /// bucket is the closest bucket (containing at most one key). pub fn buckets<'a>(&'a mut self) -> impl Iterator<Item = KBucketRef<'a, TPeerId, TVal>> + 'a { let applied_pending = &mut self.applied_pending; self.buckets.iter_mut().map(move |b| { if let Some(applied) = b.apply_pending() { applied_pending.push_back(applied) } KBucketRef(b) }) } /// Consumes the next applied pending entry, if any. /// /// When an entry is attempted to be inserted and the respective bucket is full, /// it may be recorded as pending insertion after a timeout, see [`InsertResult::Pending`]. /// /// If the oldest currently disconnected entry in the respective bucket does not change /// its status until the timeout of pending entry expires, it is evicted and /// the pending entry inserted instead. These insertions of pending entries /// happens lazily, whenever the `KBucketsTable` is accessed, and the corresponding /// buckets are updated accordingly. The fact that a pending entry was applied is /// recorded in the `KBucketsTable` in the form of `AppliedPending` results, which must be /// consumed by calling this function. pub fn take_applied_pending(&mut self) -> Option<AppliedPending<TPeerId, TVal>> { self.applied_pending.pop_front() } /// Returns an iterator over the keys closest to `target`, ordered by /// increasing distance. pub fn closest_keys<'a, T>(&'a mut self, target: &'a Key<T>) -> impl Iterator<Item = Key<TPeerId>> + 'a where T: Clone { let distance = self.local_key.distance(target); ClosestIter { target, iter: None, table: self, buckets_iter: ClosestBucketsIter::new(distance), fmap: |b: &KBucket<_, _>| -> ArrayVec<_> { b.iter().map(|(n,_)| n.key.clone()).collect() } } } /// Returns an iterator over the nodes closest to the `target` key, ordered by /// increasing distance. pub fn closest<'a, T>(&'a mut self, target: &'a Key<T>) -> impl Iterator<Item = EntryView<TPeerId, TVal>> + 'a where T: Clone, TVal: Clone { let distance = self.local_key.distance(target); ClosestIter { target, iter: None, table: self, buckets_iter: ClosestBucketsIter::new(distance), fmap: |b: &KBucket<_, TVal>| -> ArrayVec<_> { b.iter().map(|(n, status)| EntryView { node: n.clone(), status }).collect() } } } } /// An iterator over (some projection of) the closest entries in a /// `KBucketsTable` w.r.t. some target `Key`. struct ClosestIter<'a, TTarget, TPeerId, TVal, TMap, TOut> { /// A reference to the target key whose distance to the local key determines /// the order in which the buckets are traversed. The resulting /// array from projecting the entries of each bucket using `fmap` is /// sorted according to the distance to the target. target: &'a Key<TTarget>, /// A reference to all buckets of the `KBucketsTable`. table: &'a mut KBucketsTable<TPeerId, TVal>, /// The iterator over the bucket indices in the order determined by the /// distance of the local key to the target. buckets_iter: ClosestBucketsIter, /// The iterator over the entries in the currently traversed bucket. iter: Option<arrayvec::IntoIter<[TOut; MAX_NODES_PER_BUCKET]>>, /// The projection function / mapping applied on each bucket as /// it is encountered, producing the next `iter`ator. fmap: TMap } /// An iterator over the bucket indices, in the order determined by the `Distance` of /// a target from the `local_key`, such that the entries in the buckets are incrementally /// further away from the target, starting with the bucket covering the target. struct ClosestBucketsIter { /// The distance to the `local_key`. distance: Distance, /// The current state of the iterator. state: ClosestBucketsIterState } /// Operating states of a `ClosestBucketsIter`. enum ClosestBucketsIterState { /// The starting state of the iterator yields the first bucket index and /// then transitions to `ZoomIn`. Start(BucketIndex), /// The iterator "zooms in" to to yield the next bucket cotaining nodes that /// are incrementally closer to the local node but further from the `target`. /// These buckets are identified by a `1` in the corresponding bit position /// of the distance bit string. When bucket `0` is reached, the iterator /// transitions to `ZoomOut`. ZoomIn(BucketIndex), /// Once bucket `0` has been reached, the iterator starts "zooming out" /// to buckets containing nodes that are incrementally further away from /// both the local key and the target. These are identified by a `0` in /// the corresponding bit position of the distance bit string. When bucket /// `255` is reached, the iterator transitions to state `Done`. ZoomOut(BucketIndex), /// The iterator is in this state once it has visited all buckets. Done } impl ClosestBucketsIter { fn new(distance: Distance) -> Self { let state = match BucketIndex::new(&distance) { Some(i) => ClosestBucketsIterState::Start(i), None => ClosestBucketsIterState::Done }; Self { distance, state } } fn next_in(&self, i: BucketIndex) -> Option<BucketIndex> { (0 .. i.get()).rev().find_map(|i| if self.distance.0.bit(i) { Some(BucketIndex(i)) } else { None }) } fn next_out(&self, i: BucketIndex) -> Option<BucketIndex> { (i.get() + 1 .. NUM_BUCKETS).find_map(|i| if !self.distance.0.bit(i) { Some(BucketIndex(i)) } else { None }) } } impl Iterator for ClosestBucketsIter { type Item = BucketIndex; fn next(&mut self) -> Option<Self::Item> { match self.state { ClosestBucketsIterState::Start(i) => { self.state = ClosestBucketsIterState::ZoomIn(i); Some(i) } ClosestBucketsIterState::ZoomIn(i) => if let Some(i) = self.next_in(i) { self.state = ClosestBucketsIterState::ZoomIn(i); Some(i) } else { let i = BucketIndex(0); self.state = ClosestBucketsIterState::ZoomOut(i); Some(i) } ClosestBucketsIterState::ZoomOut(i) => if let Some(i) = self.next_out(i) { self.state = ClosestBucketsIterState::ZoomOut(i); Some(i) } else { self.state = ClosestBucketsIterState::Done; None } ClosestBucketsIterState::Done => None } } } impl<TTarget, TPeerId, TVal, TMap, TOut> Iterator for ClosestIter<'_, TTarget, TPeerId, TVal, TMap, TOut> where TPeerId: Clone, TMap: Fn(&KBucket<TPeerId, TVal>) -> ArrayVec<[TOut; MAX_NODES_PER_BUCKET]>, TOut: AsRef<Key<TPeerId>> { type Item = TOut; fn next(&mut self) -> Option<Self::Item> { loop { match &mut self.iter { Some(iter) => match iter.next() { Some(k) => return Some(k), None => self.iter = None } None => { if let Some(i) = self.buckets_iter.next() { let bucket = &mut self.table.buckets[i.get()]; if let Some(applied) = bucket.apply_pending() { self.table.applied_pending.push_back(applied) } let mut v = (self.fmap)(bucket); v.sort_by(|a, b| self.target.distance(a.as_ref()) .cmp(&self.target.distance(b.as_ref()))); self.iter = Some(v.into_iter()); } else { return None } } } } } } /// A reference to a bucket in a `KBucketsTable`. pub struct KBucketRef<'a, TPeerId, TVal>(&'a mut KBucket<TPeerId, TVal>); impl<TPeerId, TVal> KBucketRef<'_, TPeerId, TVal> where TPeerId: Clone { /// Returns the number of entries in the bucket. pub fn num_entries(&self) -> usize { self.0.num_entries() } /// Returns true if the bucket has a pending node. pub fn has_pending(&self) -> bool { self.0.pending().map_or(false, |n| !n.is_ready()) } } #[cfg(test)] mod tests { use super::*; use libp2p_core::PeerId; #[test] fn basic_closest() { let local_key = Key::from(PeerId::random()); let other_id = Key::from(PeerId::random()); let mut table = KBucketsTable::<_, ()>::new(local_key, Duration::from_secs(5)); if let Entry::Absent(entry) = table.entry(&other_id) { match entry.insert((), NodeStatus::Connected) { InsertResult::Inserted => (), _ => panic!() } } else { panic!() } let res = table.closest_keys(&other_id).collect::<Vec<_>>(); assert_eq!(res.len(), 1); assert_eq!(res[0], other_id); } #[test] fn update_local_id_fails() { let local_key = Key::from(PeerId::random()); let mut table = KBucketsTable::<_, ()>::new(local_key.clone(), Duration::from_secs(5)); match table.entry(&local_key) { Entry::SelfEntry => (), _ => panic!(), } } #[test] fn closest() { let local_key = Key::from(PeerId::random()); let mut table = KBucketsTable::<_, ()>::new(local_key, Duration::from_secs(5)); let mut count = 0; loop { if count == 100 { break; } let key = Key::from(PeerId::random()); if let Entry::Absent(e) = table.entry(&key) { match e.insert((), NodeStatus::Connected) { InsertResult::Inserted => count += 1, _ => continue, } } else { panic!("entry exists") } } let mut expected_keys: Vec<_> = table.buckets .iter() .flat_map(|t| t.iter().map(|(n,_)| n.key.clone())) .collect(); for _ in 0 .. 10 { let target_key = Key::from(PeerId::random()); let keys = table.closest_keys(&target_key).collect::<Vec<_>>(); // The list of keys is expected to match the result of a full-table scan. expected_keys.sort_by_key(|k| k.distance(&target_key)); assert_eq!(keys, expected_keys); } } #[test] fn applied_pending() { let local_key = Key::from(PeerId::random()); let mut table = KBucketsTable::<_, ()>::new(local_key.clone(), Duration::from_millis(1)); let expected_applied; let full_bucket_index; loop { let key = Key::from(PeerId::random()); if let Entry::Absent(e) = table.entry(&key) { match e.insert((), NodeStatus::Disconnected) { InsertResult::Full => { if let Entry::Absent(e) = table.entry(&key) { match e.insert((), NodeStatus::Connected) { InsertResult::Pending { disconnected } => { expected_applied = AppliedPending { inserted: key.clone(), evicted: Some(Node { key: disconnected, value: () }) }; full_bucket_index = BucketIndex::new(&key.distance(&local_key)); break }, _ => panic!() } } else { panic!() } }, _ => continue, } } else { panic!("entry exists") } } // Expire the timeout for the pending entry on the full bucket.` let full_bucket = &mut table.buckets[full_bucket_index.unwrap().get()]; let elapsed = Instant::now() - Duration::from_secs(1); full_bucket.pending_mut().unwrap().set_ready_at(elapsed); match table.entry(&expected_applied.inserted) { Entry::Present(_, NodeStatus::Connected) => {} x => panic!("Unexpected entry: {:?}", x) } match table.entry(&expected_applied.evicted.as_ref().unwrap().key) { Entry::Absent(_) => {} x => panic!("Unexpected entry: {:?}", x) } assert_eq!(Some(expected_applied), table.take_applied_pending()); assert_eq!(None, table.take_applied_pending()); } }