1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

use crate::{NoiseError, Protocol, PublicKey};
use futures::Poll;
use log::{debug, trace};
use snow;
use std::{fmt, io};
use tokio_io::{AsyncRead, AsyncWrite};

const MAX_NOISE_PKG_LEN: usize = 65535;
const MAX_WRITE_BUF_LEN: usize = 16384;
const TOTAL_BUFFER_LEN: usize = 2 * MAX_NOISE_PKG_LEN + 3 * MAX_WRITE_BUF_LEN;

/// A single `Buffer` contains multiple non-overlapping byte buffers.
struct Buffer {
    inner: Box<[u8; TOTAL_BUFFER_LEN]>
}

/// A mutable borrow of all byte byffers, backed by `Buffer`.
struct BufferBorrow<'a> {
    read: &'a mut [u8],
    read_crypto: &'a mut [u8],
    write: &'a mut [u8],
    write_crypto: &'a mut [u8]
}

impl Buffer {
    /// Create a mutable borrow by splitting the buffer slice.
    fn borrow_mut(&mut self) -> BufferBorrow<'_> {
        let (r, w) = self.inner.split_at_mut(2 * MAX_NOISE_PKG_LEN);
        let (read, read_crypto) = r.split_at_mut(MAX_NOISE_PKG_LEN);
        let (write, write_crypto) = w.split_at_mut(MAX_WRITE_BUF_LEN);
        BufferBorrow { read, read_crypto, write, write_crypto }
    }
}

/// A type used during the handshake phase, exchanging key material with the remote.
pub(super) struct Handshake<T>(NoiseOutput<T>);

impl<T> Handshake<T> {
    pub(super) fn new(io: T, session: snow::Session) -> Self {
        Handshake(NoiseOutput::new(io, session))
    }
}

impl<T: AsyncRead + AsyncWrite> Handshake<T> {
    /// Send handshake message to remote.
    pub(super) fn send(&mut self) -> Poll<(), io::Error> {
        Ok(self.0.poll_write(&[])?.map(|_| ()))
    }

    /// Flush handshake message to remote.
    pub(super) fn flush(&mut self) -> Poll<(), io::Error> {
        self.0.poll_flush()
    }

    /// Receive handshake message from remote.
    pub(super) fn receive(&mut self) -> Poll<(), io::Error> {
        Ok(self.0.poll_read(&mut [])?.map(|_| ()))
    }

    /// Finish the handshake.
    ///
    /// This turns the noise session into transport mode and returns the remote's static
    /// public key as well as the established session for further communication.
    pub(super) fn finish<C>(self) -> Result<(PublicKey<C>, NoiseOutput<T>), NoiseError>
    where
        C: Protocol<C>
    {
        let s = self.0.session.into_transport_mode()?;
        let p = s.get_remote_static()
            .ok_or(NoiseError::InvalidKey)
            .and_then(C::public_from_bytes)?;
        Ok((p, NoiseOutput { session: s, .. self.0 }))
    }
}

/// A noise session to a remote.
pub struct NoiseOutput<T> {
    io: T,
    session: snow::Session,
    buffer: Buffer,
    read_state: ReadState,
    write_state: WriteState
}

impl<T> fmt::Debug for NoiseOutput<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("NoiseOutput")
            .field("read_state", &self.read_state)
            .field("write_state", &self.write_state)
            .finish()
    }
}

impl<T> NoiseOutput<T> {
    fn new(io: T, session: snow::Session) -> Self {
        NoiseOutput {
            io, session,
            buffer: Buffer { inner: Box::new([0; TOTAL_BUFFER_LEN]) },
            read_state: ReadState::Init,
            write_state: WriteState::Init
        }
    }
}

/// The various states of reading a noise session transitions through.
#[derive(Debug)]
enum ReadState {
    /// initial state
    Init,
    /// read encrypted frame data
    ReadData { len: usize, off: usize },
    /// copy decrypted frame data
    CopyData { len: usize, off: usize },
    /// end of file has been reached (terminal state)
    /// The associated result signals if the EOF was unexpected or not.
    Eof(Result<(), ()>),
    /// decryption error (terminal state)
    DecErr
}

/// The various states of writing a noise session transitions through.
#[derive(Debug)]
enum WriteState {
    /// initial state
    Init,
    /// accumulate write data
    BufferData { off: usize },
    /// write frame length
    WriteLen { len: usize },
    /// write out encrypted data
    WriteData { len: usize, off: usize },
    /// end of file has been reached (terminal state)
    Eof,
    /// encryption error (terminal state)
    EncErr
}

impl<T: io::Read> io::Read for NoiseOutput<T> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let buffer = self.buffer.borrow_mut();
        loop {
            trace!("read state: {:?}", self.read_state);
            match self.read_state {
                ReadState::Init => {
                    let n = match read_frame_len(&mut self.io)? {
                        Some(n) => n,
                        None => {
                            trace!("read: eof");
                            self.read_state = ReadState::Eof(Ok(()));
                            return Ok(0)
                        }
                    };
                    trace!("read: next frame len = {}", n);
                    if n == 0 {
                        trace!("read: empty frame");
                        continue
                    }
                    self.read_state = ReadState::ReadData { len: usize::from(n), off: 0 }
                }
                ReadState::ReadData { len, ref mut off } => {
                    let n = self.io.read(&mut buffer.read[*off .. len])?;
                    trace!("read: read {}/{} bytes", *off + n, len);
                    if n == 0 {
                        trace!("read: eof");
                        self.read_state = ReadState::Eof(Err(()));
                        return Err(io::ErrorKind::UnexpectedEof.into())
                    }
                    *off += n;
                    if len == *off {
                        trace!("read: decrypting {} bytes", len);
                        if let Ok(n) = self.session.read_message(&buffer.read[.. len], buffer.read_crypto) {
                            trace!("read: payload len = {} bytes", n);
                            self.read_state = ReadState::CopyData { len: n, off: 0 }
                        } else {
                            debug!("decryption error");
                            self.read_state = ReadState::DecErr;
                            return Err(io::ErrorKind::InvalidData.into())
                        }
                    }
                }
                ReadState::CopyData { len, ref mut off } => {
                    let n = std::cmp::min(len - *off, buf.len());
                    buf[.. n].copy_from_slice(&buffer.read_crypto[*off .. *off + n]);
                    trace!("read: copied {}/{} bytes", *off + n, len);
                    *off += n;
                    if len == *off {
                        self.read_state = ReadState::Init
                    }
                    return Ok(n)
                }
                ReadState::Eof(Ok(())) => {
                    trace!("read: eof");
                    return Ok(0)
                }
                ReadState::Eof(Err(())) => {
                    trace!("read: eof (unexpected)");
                    return Err(io::ErrorKind::UnexpectedEof.into())
                }
                ReadState::DecErr => return Err(io::ErrorKind::InvalidData.into())
            }
        }
    }
}

impl<T: io::Write> io::Write for NoiseOutput<T> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        let buffer = self.buffer.borrow_mut();
        loop {
            trace!("write state: {:?}", self.write_state);
            match self.write_state {
                WriteState::Init => {
                    self.write_state = WriteState::BufferData { off: 0 }
                }
                WriteState::BufferData { ref mut off } => {
                    let n = std::cmp::min(MAX_WRITE_BUF_LEN - *off, buf.len());
                    buffer.write[*off .. *off + n].copy_from_slice(&buf[.. n]);
                    trace!("write: buffered {} bytes", *off + n);
                    *off += n;
                    if *off == MAX_WRITE_BUF_LEN {
                        trace!("write: encrypting {} bytes", *off);
                        if let Ok(n) = self.session.write_message(buffer.write, buffer.write_crypto) {
                            trace!("write: cipher text len = {} bytes", n);
                            self.write_state = WriteState::WriteLen { len: n }
                        } else {
                            debug!("encryption error");
                            self.write_state = WriteState::EncErr;
                            return Err(io::ErrorKind::InvalidData.into())
                        }
                    }
                    return Ok(n)
                }
                WriteState::WriteLen { len } => {
                    trace!("write: writing len ({})", len);
                    if !write_frame_len(&mut self.io, len as u16)? {
                        trace!("write: eof");
                        self.write_state = WriteState::Eof;
                        return Err(io::ErrorKind::WriteZero.into())
                    }
                    self.write_state = WriteState::WriteData { len, off: 0 }
                }
                WriteState::WriteData { len, ref mut off } => {
                    let n = self.io.write(&buffer.write_crypto[*off .. len])?;
                    trace!("write: wrote {}/{} bytes", *off + n, len);
                    if n == 0 {
                        trace!("write: eof");
                        self.write_state = WriteState::Eof;
                        return Err(io::ErrorKind::WriteZero.into())
                    }
                    *off += n;
                    if len == *off {
                        trace!("write: finished writing {} bytes", len);
                        self.write_state = WriteState::Init
                    }
                }
                WriteState::Eof => {
                    trace!("write: eof");
                    return Err(io::ErrorKind::WriteZero.into())
                }
                WriteState::EncErr => return Err(io::ErrorKind::InvalidData.into())
            }
        }
    }

    fn flush(&mut self) -> io::Result<()> {
        let buffer = self.buffer.borrow_mut();
        loop {
            match self.write_state {
                WriteState::Init => return Ok(()),
                WriteState::BufferData { off } => {
                    trace!("flush: encrypting {} bytes", off);
                    if let Ok(n) = self.session.write_message(&buffer.write[.. off], buffer.write_crypto) {
                        trace!("flush: cipher text len = {} bytes", n);
                        self.write_state = WriteState::WriteLen { len: n }
                    } else {
                        debug!("encryption error");
                        self.write_state = WriteState::EncErr;
                        return Err(io::ErrorKind::InvalidData.into())
                    }
                }
                WriteState::WriteLen { len } => {
                    trace!("flush: writing len ({})", len);
                    if !write_frame_len(&mut self.io, len as u16)? {
                        trace!("write: eof");
                        self.write_state = WriteState::Eof;
                        return Err(io::ErrorKind::WriteZero.into())
                    }
                    self.write_state = WriteState::WriteData { len, off: 0 }
                }
                WriteState::WriteData { len, ref mut off } => {
                    let n = self.io.write(&buffer.write_crypto[*off .. len])?;
                    trace!("flush: wrote {}/{} bytes", *off + n, len);
                    if n == 0 {
                        trace!("flush: eof");
                        self.write_state = WriteState::Eof;
                        return Err(io::ErrorKind::WriteZero.into())
                    }
                    *off += n;
                    if len == *off {
                        trace!("flush: finished writing {} bytes", len);
                        self.write_state = WriteState::Init;
                        return Ok(())
                    }
                }
                WriteState::Eof => {
                    trace!("flush: eof");
                    return Err(io::ErrorKind::WriteZero.into())
                }
                WriteState::EncErr => return Err(io::ErrorKind::InvalidData.into())
            }
        }
    }
}

impl<T: AsyncRead> AsyncRead for NoiseOutput<T> {}

impl<T: AsyncWrite> AsyncWrite for NoiseOutput<T> {
    fn shutdown(&mut self) -> Poll<(), io::Error> {
        self.io.shutdown()
    }
}

/// Read 2 bytes as frame length.
///
/// Returns `None` if EOF has been encountered.
fn read_frame_len<R: io::Read>(io: &mut R) -> io::Result<Option<u16>> {
    let mut buf = [0, 0];
    let mut off = 0;
    loop {
        let n = io.read(&mut buf[off ..])?;
        if n == 0 {
            return Ok(None)
        }
        off += n;
        if off == 2 {
            return Ok(Some(u16::from_be_bytes(buf)))
        }
    }
}

/// Write frame length.
///
/// Returns `false` if EOF has been encountered.
fn write_frame_len<W: io::Write>(io: &mut W, len: u16) -> io::Result<bool> {
    let buf = len.to_be_bytes();
    let mut off = 0;
    loop {
        let n = io.write(&buf[off ..])?;
        if n == 0 {
            return Ok(false)
        }
        off += n;
        if off == 2 {
            return Ok(true)
        }
    }
}