1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! Legacy Noise protocols based on X25519.
//!
//! **Note**: This set of protocols is not interoperable with other
//! libp2p implementations.

use crate::{NoiseConfig, NoiseError, Protocol, ProtocolParams};
use curve25519_dalek::edwards::CompressedEdwardsY;
use libp2p_core::UpgradeInfo;
use libp2p_core::{identity, identity::ed25519};
use once_cell::sync::Lazy;
use rand::Rng;
use sha2::{Digest, Sha512};
use x25519_dalek::{x25519, X25519_BASEPOINT_BYTES};
use zeroize::Zeroize;

use super::*;

static PARAMS_IK: Lazy<ProtocolParams> = Lazy::new(|| {
    "Noise_IK_25519_ChaChaPoly_SHA256"
        .parse()
        .map(ProtocolParams)
        .expect("Invalid protocol name")
});
static PARAMS_IX: Lazy<ProtocolParams> = Lazy::new(|| {
    "Noise_IX_25519_ChaChaPoly_SHA256"
        .parse()
        .map(ProtocolParams)
        .expect("Invalid protocol name")
});
static PARAMS_XX: Lazy<ProtocolParams> = Lazy::new(|| {
    "Noise_XX_25519_ChaChaPoly_SHA256"
        .parse()
        .map(ProtocolParams)
        .expect("Invalid protocol name")
});

/// A X25519 key.
#[derive(Clone)]
pub struct X25519([u8; 32]);

impl AsRef<[u8]> for X25519 {
    fn as_ref(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl Zeroize for X25519 {
    fn zeroize(&mut self) {
        self.0.zeroize()
    }
}

impl UpgradeInfo for NoiseConfig<IX, X25519> {
    type Info = &'static [u8];
    type InfoIter = std::iter::Once<Self::Info>;

    fn protocol_info(&self) -> Self::InfoIter {
        std::iter::once(b"/noise/ix/25519/chachapoly/sha256/0.1.0")
    }
}

impl UpgradeInfo for NoiseConfig<XX, X25519> {
    type Info = &'static [u8];
    type InfoIter = std::iter::Once<Self::Info>;

    fn protocol_info(&self) -> Self::InfoIter {
        std::iter::once(b"/noise/xx/25519/chachapoly/sha256/0.1.0")
    }
}

impl<R> UpgradeInfo for NoiseConfig<IK, X25519, R> {
    type Info = &'static [u8];
    type InfoIter = std::iter::Once<Self::Info>;

    fn protocol_info(&self) -> Self::InfoIter {
        std::iter::once(b"/noise/ik/25519/chachapoly/sha256/0.1.0")
    }
}

/// Legacy Noise protocol for X25519.
///
/// **Note**: This `Protocol` provides no configuration that
/// is interoperable  with other libp2p implementations.
/// See [`crate::X25519Spec`] instead.
impl Protocol<X25519> for X25519 {
    fn params_ik() -> ProtocolParams {
        PARAMS_IK.clone()
    }

    fn params_ix() -> ProtocolParams {
        PARAMS_IX.clone()
    }

    fn params_xx() -> ProtocolParams {
        PARAMS_XX.clone()
    }

    fn public_from_bytes(bytes: &[u8]) -> Result<PublicKey<X25519>, NoiseError> {
        if bytes.len() != 32 {
            return Err(NoiseError::InvalidLength);
        }
        let mut pk = [0u8; 32];
        pk.copy_from_slice(bytes);
        Ok(PublicKey(X25519(pk)))
    }

    #[allow(irrefutable_let_patterns)]
    fn linked(id_pk: &identity::PublicKey, dh_pk: &PublicKey<X25519>) -> bool {
        if let identity::PublicKey::Ed25519(ref p) = id_pk {
            PublicKey::from_ed25519(p).as_ref() == dh_pk.as_ref()
        } else {
            false
        }
    }
}

impl Keypair<X25519> {
    /// An "empty" keypair as a starting state for DH computations in `snow`,
    /// which get manipulated through the `snow::types::Dh` interface.
    pub(super) fn default() -> Self {
        Keypair {
            secret: SecretKey(X25519([0u8; 32])),
            public: PublicKey(X25519([0u8; 32])),
        }
    }

    /// Create a new X25519 keypair.
    pub fn new() -> Keypair<X25519> {
        let mut sk_bytes = [0u8; 32];
        rand::thread_rng().fill(&mut sk_bytes);
        let sk = SecretKey(X25519(sk_bytes)); // Copy
        sk_bytes.zeroize();
        Self::from(sk)
    }

    /// Creates an X25519 `Keypair` from an [`identity::Keypair`], if possible.
    ///
    /// The returned keypair will be [associated with](KeypairIdentity) the
    /// given identity keypair.
    ///
    /// Returns `None` if the given identity keypair cannot be used as an X25519 keypair.
    ///
    /// > **Note**: If the identity keypair is already used in the context
    /// > of other cryptographic protocols outside of Noise, it should be preferred to
    /// > create a new static X25519 keypair for use in the Noise protocol.
    /// >
    /// > See also:
    /// >
    /// >  * [Noise: Static Key Reuse](http://www.noiseprotocol.org/noise.html#security-considerations)
    #[allow(unreachable_patterns)]
    pub fn from_identity(id_keys: &identity::Keypair) -> Option<AuthenticKeypair<X25519>> {
        match id_keys {
            identity::Keypair::Ed25519(p) => {
                let kp = Keypair::from(SecretKey::from_ed25519(&p.secret()));
                let id = KeypairIdentity {
                    public: id_keys.public(),
                    signature: None,
                };
                Some(AuthenticKeypair {
                    keypair: kp,
                    identity: id,
                })
            }
            _ => None,
        }
    }
}

impl Default for Keypair<X25519> {
    fn default() -> Self {
        Self::new()
    }
}

/// Promote a X25519 secret key into a keypair.
impl From<SecretKey<X25519>> for Keypair<X25519> {
    fn from(secret: SecretKey<X25519>) -> Keypair<X25519> {
        let public = PublicKey(X25519(x25519((secret.0).0, X25519_BASEPOINT_BYTES)));
        Keypair { secret, public }
    }
}

impl PublicKey<X25519> {
    /// Construct a curve25519 public key from an Ed25519 public key.
    pub fn from_ed25519(pk: &ed25519::PublicKey) -> Self {
        PublicKey(X25519(
            CompressedEdwardsY(pk.encode())
                .decompress()
                .expect("An Ed25519 public key is a valid point by construction.")
                .to_montgomery()
                .0,
        ))
    }
}

impl SecretKey<X25519> {
    /// Construct a X25519 secret key from a Ed25519 secret key.
    ///
    /// > **Note**: If the Ed25519 secret key is already used in the context
    /// > of other cryptographic protocols outside of Noise, it should be preferred
    /// > to create a new keypair for use in the Noise protocol.
    /// >
    /// > See also:
    /// >
    /// >  * [Noise: Static Key Reuse](http://www.noiseprotocol.org/noise.html#security-considerations)
    /// >  * [Ed25519 to Curve25519](https://libsodium.gitbook.io/doc/advanced/ed25519-curve25519)
    pub fn from_ed25519(ed25519_sk: &ed25519::SecretKey) -> Self {
        // An Ed25519 public key is derived off the left half of the SHA512 of the
        // secret scalar, hence a matching conversion of the secret key must do
        // the same to yield a Curve25519 keypair with the same public key.
        // let ed25519_sk = ed25519::SecretKey::from(ed);
        let mut curve25519_sk: [u8; 32] = [0; 32];
        let hash = Sha512::digest(ed25519_sk.as_ref());
        curve25519_sk.copy_from_slice(&hash[..32]);
        let sk = SecretKey(X25519(curve25519_sk)); // Copy
        curve25519_sk.zeroize();
        sk
    }
}

#[doc(hidden)]
impl snow::types::Dh for Keypair<X25519> {
    fn name(&self) -> &'static str {
        "25519"
    }
    fn pub_len(&self) -> usize {
        32
    }
    fn priv_len(&self) -> usize {
        32
    }
    fn pubkey(&self) -> &[u8] {
        self.public.as_ref()
    }
    fn privkey(&self) -> &[u8] {
        self.secret.as_ref()
    }

    fn set(&mut self, sk: &[u8]) {
        let mut secret = [0u8; 32];
        secret.copy_from_slice(sk);
        self.secret = SecretKey(X25519(secret)); // Copy
        self.public = PublicKey(X25519(x25519(secret, X25519_BASEPOINT_BYTES)));
        secret.zeroize();
    }

    fn generate(&mut self, rng: &mut dyn snow::types::Random) {
        let mut secret = [0u8; 32];
        rng.fill_bytes(&mut secret);
        self.secret = SecretKey(X25519(secret)); // Copy
        self.public = PublicKey(X25519(x25519(secret, X25519_BASEPOINT_BYTES)));
        secret.zeroize();
    }

    fn dh(&self, pk: &[u8], shared_secret: &mut [u8]) -> Result<(), snow::Error> {
        let mut p = [0; 32];
        p.copy_from_slice(&pk[..32]);
        let ss = x25519((self.secret.0).0, p);
        shared_secret[..32].copy_from_slice(&ss[..]);
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    // Use the ed25519_compact for testing
    use ed25519_compact;
    use libp2p_core::identity::ed25519;
    // Use the libsodium-sys-stable crypto_sign imports for testing
    use libsodium_sys::crypto_sign_ed25519_pk_to_curve25519;
    use libsodium_sys::crypto_sign_ed25519_sk_to_curve25519;
    use quickcheck::*;
    use x25519_dalek::StaticSecret;

    // ed25519 to x25519 keypair conversion must yield the same results as
    // obtained through libsodium.
    #[test]
    fn prop_ed25519_to_x25519_matches_libsodium() {
        fn prop() -> bool {
            let ed25519 = ed25519::Keypair::generate();
            let x25519 = Keypair::from(SecretKey::from_ed25519(&ed25519.secret()));

            let sodium_sec =
                ed25519_sk_to_curve25519(&ed25519_compact::SecretKey::new(ed25519.encode()));
            let sodium_pub = ed25519_pk_to_curve25519(&ed25519_compact::PublicKey::new(
                ed25519.public().encode(),
            ));

            let our_pub = x25519.public.0;
            // libsodium does the [clamping] of the scalar upon key construction,
            // just like x25519-dalek, but this module uses the raw byte-oriented x25519
            // function from x25519-dalek, as defined in RFC7748, so "our" secret scalar
            // must be clamped before comparing it to the one computed by libsodium.
            // That happens in `StaticSecret::from`.
            //
            // [clamping]: http://www.lix.polytechnique.fr/~smith/ECC/#scalar-clamping
            let our_sec = StaticSecret::from((x25519.secret.0).0).to_bytes();

            sodium_sec.as_ref() == Some(&our_sec) && sodium_pub.as_ref() == Some(&our_pub.0)
        }

        quickcheck(prop as fn() -> _);
    }

    // The x25519 public key obtained through ed25519 keypair conversion
    // (and thus derived from the converted secret key) must match the x25519
    // public key derived directly from the ed25519 public key.
    #[test]
    fn prop_public_ed25519_to_x25519_matches() {
        fn prop() -> bool {
            let ed25519 = ed25519::Keypair::generate();
            let x25519 = Keypair::from(SecretKey::from_ed25519(&ed25519.secret()));
            let x25519_public = PublicKey::from_ed25519(&ed25519.public());
            x25519.public == x25519_public
        }

        quickcheck(prop as fn() -> _);
    }

    pub fn ed25519_pk_to_curve25519(k: &ed25519_compact::PublicKey) -> Option<[u8; 32]> {
        let mut out = [0u8; 32];
        unsafe {
            if crypto_sign_ed25519_pk_to_curve25519(out.as_mut_ptr(), k.as_ptr()) == 0 {
                Some(out)
            } else {
                None
            }
        }
    }

    pub fn ed25519_sk_to_curve25519(k: &ed25519_compact::SecretKey) -> Option<[u8; 32]> {
        let mut out = [0u8; 32];
        unsafe {
            if crypto_sign_ed25519_sk_to_curve25519(out.as_mut_ptr(), k.as_ptr()) == 0 {
                Some(out)
            } else {
                None
            }
        }
    }
}