1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! Noise protocol handshake I/O.

mod proto {
    #![allow(unreachable_pub)]
    include!("../generated/mod.rs");
    pub use self::payload::proto::NoiseHandshakePayload;
}

use crate::io::{framed::NoiseFramed, Output};
use crate::protocol::{KeypairIdentity, Protocol, PublicKey};

use crate::Error;
use crate::LegacyConfig;
use bytes::Bytes;
use futures::prelude::*;
use libp2p_identity as identity;
use quick_protobuf::{BytesReader, MessageRead, MessageWrite, Writer};
use std::io;

/// The identity of the remote established during a handshake.
#[deprecated(
    note = "This type will be made private in the future. Use `libp2p_noise::Config::new` instead to use the noise protocol."
)]
pub enum RemoteIdentity<C> {
    /// The remote provided no identifying information.
    ///
    /// The identity of the remote is unknown and must be obtained through
    /// a different, out-of-band channel.
    Unknown,

    /// The remote provided a static DH public key.
    ///
    /// The static DH public key is authentic in the sense that a successful
    /// handshake implies that the remote possesses a corresponding secret key.
    ///
    /// > **Note**: To rule out active attacks like a MITM, trust in the public key must
    /// > still be established, e.g. by comparing the key against an expected or
    /// > otherwise known public key.
    StaticDhKey(PublicKey<C>),

    /// The remote provided a public identity key in addition to a static DH
    /// public key and the latter is authentic w.r.t. the former.
    ///
    /// > **Note**: To rule out active attacks like a MITM, trust in the public key must
    /// > still be established, e.g. by comparing the key against an expected or
    /// > otherwise known public key.
    IdentityKey(identity::PublicKey),
}

//////////////////////////////////////////////////////////////////////////////
// Internal

/// Handshake state.
pub(crate) struct State<T> {
    /// The underlying I/O resource.
    io: NoiseFramed<T, snow::HandshakeState>,
    /// The associated public identity of the local node's static DH keypair,
    /// which can be sent to the remote as part of an authenticated handshake.
    identity: KeypairIdentity,
    /// The received signature over the remote's static DH public key, if any.
    dh_remote_pubkey_sig: Option<Vec<u8>>,
    /// The known or received public identity key of the remote, if any.
    id_remote_pubkey: Option<identity::PublicKey>,
    /// Legacy configuration parameters.
    legacy: LegacyConfig,
}

impl<T> State<T> {
    /// Initializes the state for a new Noise handshake, using the given local
    /// identity keypair and local DH static public key. The handshake messages
    /// will be sent and received on the given I/O resource and using the
    /// provided session for cryptographic operations according to the chosen
    /// Noise handshake pattern.

    pub(crate) fn new(
        io: T,
        session: snow::HandshakeState,
        identity: KeypairIdentity,
        expected_remote_key: Option<identity::PublicKey>,
        legacy: LegacyConfig,
    ) -> Self {
        Self {
            identity,
            io: NoiseFramed::new(io, session),
            dh_remote_pubkey_sig: None,
            id_remote_pubkey: expected_remote_key,
            legacy,
        }
    }
}

impl<T> State<T> {
    /// Finish a handshake, yielding the established remote identity and the
    /// [`Output`] for communicating on the encrypted channel.
    pub(crate) fn finish<C>(self) -> Result<(RemoteIdentity<C>, Output<T>), Error>
    where
        C: Protocol<C> + AsRef<[u8]>,
    {
        let (pubkey, io) = self.io.into_transport()?;
        let remote = match (self.id_remote_pubkey, pubkey) {
            (_, None) => RemoteIdentity::Unknown,
            (None, Some(dh_pk)) => RemoteIdentity::StaticDhKey(dh_pk),
            (Some(id_pk), Some(dh_pk)) => {
                if C::verify(&id_pk, &dh_pk, &self.dh_remote_pubkey_sig) {
                    RemoteIdentity::IdentityKey(id_pk)
                } else {
                    return Err(Error::BadSignature);
                }
            }
        };
        Ok((remote, io))
    }
}

//////////////////////////////////////////////////////////////////////////////
// Handshake Message Futures

/// A future for receiving a Noise handshake message.
async fn recv<T>(state: &mut State<T>) -> Result<Bytes, Error>
where
    T: AsyncRead + Unpin,
{
    match state.io.next().await {
        None => Err(io::Error::new(io::ErrorKind::UnexpectedEof, "eof").into()),
        Some(Err(e)) => Err(e.into()),
        Some(Ok(m)) => Ok(m),
    }
}

/// A future for receiving a Noise handshake message with an empty payload.
pub(crate) async fn recv_empty<T>(state: &mut State<T>) -> Result<(), Error>
where
    T: AsyncRead + Unpin,
{
    let msg = recv(state).await?;
    if !msg.is_empty() {
        return Err(
            io::Error::new(io::ErrorKind::InvalidData, "Unexpected handshake payload.").into(),
        );
    }
    Ok(())
}

/// A future for sending a Noise handshake message with an empty payload.
pub(crate) async fn send_empty<T>(state: &mut State<T>) -> Result<(), Error>
where
    T: AsyncWrite + Unpin,
{
    state.io.send(&Vec::new()).await?;
    Ok(())
}

/// A future for receiving a Noise handshake message with a payload
/// identifying the remote.
///
/// In case `expected_key` is passed, this function will fail if the received key does not match the expected key.
/// In case the remote does not send us a key, the expected key is assumed to be the remote's key.
pub(crate) async fn recv_identity<T>(state: &mut State<T>) -> Result<(), Error>
where
    T: AsyncRead + Unpin,
{
    let msg = recv(state).await?;

    let mut reader = BytesReader::from_bytes(&msg[..]);
    let mut pb_result = proto::NoiseHandshakePayload::from_reader(&mut reader, &msg[..]);

    if pb_result.is_err() && state.legacy.recv_legacy_handshake {
        // NOTE: This is support for legacy handshake payloads. As long as
        // the frame length is less than 256 bytes, which is the case for
        // all protobuf payloads not containing RSA keys, there is no room
        // for misinterpretation, since if a two-bytes length prefix is present
        // the first byte will be 0, which is always an unexpected protobuf tag
        // value because the fields in the .proto file start with 1 and decoding
        // thus expects a non-zero first byte. We will therefore always correctly
        // fall back to the legacy protobuf parsing in these cases (again, not
        // considering RSA keys, for which there may be a probabilistically
        // very small chance of misinterpretation).
        pb_result = pb_result.or_else(|e| {
            if msg.len() > 2 {
                let mut buf = [0, 0];
                buf.copy_from_slice(&msg[..2]);
                // If there is a second length it must be 2 bytes shorter than the
                // frame length, because each length is encoded as a `u16`.
                if usize::from(u16::from_be_bytes(buf)) + 2 == msg.len() {
                    log::debug!("Attempting fallback legacy protobuf decoding.");
                    let mut reader = BytesReader::from_bytes(&msg[2..]);
                    proto::NoiseHandshakePayload::from_reader(&mut reader, &msg[2..])
                } else {
                    Err(e)
                }
            } else {
                Err(e)
            }
        });
    }
    let pb = pb_result?;

    if !pb.identity_key.is_empty() {
        let pk = identity::PublicKey::try_decode_protobuf(&pb.identity_key)?;
        if let Some(ref k) = state.id_remote_pubkey {
            if k != &pk {
                return Err(Error::UnexpectedKey);
            }
        }
        state.id_remote_pubkey = Some(pk);
    }

    if !pb.identity_sig.is_empty() {
        state.dh_remote_pubkey_sig = Some(pb.identity_sig);
    }

    Ok(())
}

/// Send a Noise handshake message with a payload identifying the local node to the remote.
pub(crate) async fn send_identity<T>(state: &mut State<T>) -> Result<(), Error>
where
    T: AsyncWrite + Unpin,
{
    let mut pb = proto::NoiseHandshakePayload {
        identity_key: state.identity.public.encode_protobuf(),
        ..Default::default()
    };

    if let Some(ref sig) = state.identity.signature {
        pb.identity_sig = sig.clone()
    }

    let mut msg = if state.legacy.send_legacy_handshake {
        let mut msg = Vec::with_capacity(2 + pb.get_size());
        msg.extend_from_slice(&(pb.get_size() as u16).to_be_bytes());
        msg
    } else {
        Vec::with_capacity(pb.get_size())
    };

    let mut writer = Writer::new(&mut msg);
    pb.write_message(&mut writer).expect("Encoding to succeed");
    state.io.send(&msg).await?;

    Ok(())
}

/// Send a Noise handshake message with a payload identifying the local node to the remote.
pub(crate) async fn send_signature_only<T>(state: &mut State<T>) -> Result<(), Error>
where
    T: AsyncWrite + Unpin,
{
    let mut pb = proto::NoiseHandshakePayload::default();

    if let Some(ref sig) = state.identity.signature {
        pb.identity_sig = sig.clone()
    }

    let mut msg = if state.legacy.send_legacy_handshake {
        let mut msg = Vec::with_capacity(2 + pb.get_size());
        msg.extend_from_slice(&(pb.get_size() as u16).to_be_bytes());
        msg
    } else {
        Vec::with_capacity(pb.get_size())
    };

    let mut writer = Writer::new(&mut msg);
    pb.write_message(&mut writer).expect("Encoding to succeed");
    state.io.send(&msg).await?;

    Ok(())
}