1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
// Copyright 2022 Parity Technologies (UK) Ltd.
// Copyright 2023 Protocol Labs.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use bytes::Bytes;
use futures::{channel::oneshot, prelude::*, ready};
use std::{
io,
pin::Pin,
task::{Context, Poll},
};
use crate::proto::{Flag, Message};
use crate::{
stream::drop_listener::GracefullyClosed,
stream::framed_dc::FramedDc,
stream::state::{Closing, State},
};
mod drop_listener;
mod framed_dc;
mod state;
/// Maximum length of a message.
///
/// "As long as message interleaving is not supported, the sender SHOULD limit the maximum message
/// size to 16 KB to avoid monopolization."
/// Source: <https://www.rfc-editor.org/rfc/rfc8831#name-transferring-user-data-on-a>
pub const MAX_MSG_LEN: usize = 16 * 1024;
/// Length of varint, in bytes.
const VARINT_LEN: usize = 2;
/// Overhead of the protobuf encoding, in bytes.
const PROTO_OVERHEAD: usize = 5;
/// Maximum length of data, in bytes.
const MAX_DATA_LEN: usize = MAX_MSG_LEN - VARINT_LEN - PROTO_OVERHEAD;
pub use drop_listener::DropListener;
/// A stream backed by a WebRTC data channel.
///
/// To be a proper libp2p stream, we need to implement [`AsyncRead`] and [`AsyncWrite`] as well
/// as support a half-closed state which we do by framing messages in a protobuf envelope.
pub struct Stream<T> {
io: FramedDc<T>,
state: State,
read_buffer: Bytes,
/// Dropping this will close the oneshot and notify the receiver by emitting `Canceled`.
drop_notifier: Option<oneshot::Sender<GracefullyClosed>>,
}
impl<T> Stream<T>
where
T: AsyncRead + AsyncWrite + Unpin + Clone,
{
/// Returns a new [`Stream`] and a [`DropListener`], which will notify the receiver when/if the stream is dropped.
pub fn new(data_channel: T) -> (Self, DropListener<T>) {
let (sender, receiver) = oneshot::channel();
let stream = Self {
io: framed_dc::new(data_channel.clone()),
state: State::Open,
read_buffer: Bytes::default(),
drop_notifier: Some(sender),
};
let listener = DropListener::new(framed_dc::new(data_channel), receiver);
(stream, listener)
}
/// Gracefully closes the "read-half" of the stream.
pub fn poll_close_read(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
loop {
match self.state.close_read_barrier()? {
Some(Closing::Requested) => {
ready!(self.io.poll_ready_unpin(cx))?;
self.io.start_send_unpin(Message {
flag: Some(Flag::STOP_SENDING),
message: None,
})?;
self.state.close_read_message_sent();
continue;
}
Some(Closing::MessageSent) => {
ready!(self.io.poll_flush_unpin(cx))?;
self.state.read_closed();
return Poll::Ready(Ok(()));
}
None => return Poll::Ready(Ok(())),
}
}
}
}
impl<T> AsyncRead for Stream<T>
where
T: AsyncRead + AsyncWrite + Unpin,
{
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<usize>> {
loop {
self.state.read_barrier()?;
if !self.read_buffer.is_empty() {
let n = std::cmp::min(self.read_buffer.len(), buf.len());
let data = self.read_buffer.split_to(n);
buf[0..n].copy_from_slice(&data[..]);
return Poll::Ready(Ok(n));
}
let Self {
read_buffer,
io,
state,
..
} = &mut *self;
match ready!(io_poll_next(io, cx))? {
Some((flag, message)) => {
if let Some(flag) = flag {
state.handle_inbound_flag(flag, read_buffer);
}
debug_assert!(read_buffer.is_empty());
match message {
Some(msg) if !msg.is_empty() => {
*read_buffer = msg.into();
}
_ => {
tracing::debug!("poll_read buffer is empty, received None");
return Poll::Ready(Ok(0));
}
}
}
None => {
state.handle_inbound_flag(Flag::FIN, read_buffer);
return Poll::Ready(Ok(0));
}
}
}
}
}
impl<T> AsyncWrite for Stream<T>
where
T: AsyncRead + AsyncWrite + Unpin,
{
fn poll_write(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
while self.state.read_flags_in_async_write() {
// TODO: In case AsyncRead::poll_read encountered an error or returned None earlier, we will poll the
// underlying I/O resource once more. Is that allowed? How about introducing a state IoReadClosed?
let Self {
read_buffer,
io,
state,
..
} = &mut *self;
match io_poll_next(io, cx)? {
Poll::Ready(Some((Some(flag), message))) => {
// Read side is closed. Discard any incoming messages.
drop(message);
// But still handle flags, e.g. a `Flag::StopSending`.
state.handle_inbound_flag(flag, read_buffer)
}
Poll::Ready(Some((None, message))) => drop(message),
Poll::Ready(None) | Poll::Pending => break,
}
}
self.state.write_barrier()?;
ready!(self.io.poll_ready_unpin(cx))?;
let n = usize::min(buf.len(), MAX_DATA_LEN);
Pin::new(&mut self.io).start_send(Message {
flag: None,
message: Some(buf[0..n].into()),
})?;
Poll::Ready(Ok(n))
}
fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.io.poll_flush_unpin(cx).map_err(Into::into)
}
fn poll_close(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
loop {
match self.state.close_write_barrier()? {
Some(Closing::Requested) => {
ready!(self.io.poll_ready_unpin(cx))?;
self.io.start_send_unpin(Message {
flag: Some(Flag::FIN),
message: None,
})?;
self.state.close_write_message_sent();
continue;
}
Some(Closing::MessageSent) => {
ready!(self.io.poll_flush_unpin(cx))?;
self.state.write_closed();
let _ = self
.drop_notifier
.take()
.expect("to not close twice")
.send(GracefullyClosed {});
return Poll::Ready(Ok(()));
}
None => return Poll::Ready(Ok(())),
}
}
}
}
fn io_poll_next<T>(
io: &mut FramedDc<T>,
cx: &mut Context<'_>,
) -> Poll<io::Result<Option<(Option<Flag>, Option<Vec<u8>>)>>>
where
T: AsyncRead + AsyncWrite + Unpin,
{
match ready!(io.poll_next_unpin(cx))
.transpose()
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?
{
Some(Message { flag, message }) => Poll::Ready(Ok(Some((flag, message)))),
None => Poll::Ready(Ok(None)),
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::stream::framed_dc::codec;
use asynchronous_codec::Encoder;
use bytes::BytesMut;
#[test]
fn max_data_len() {
// Largest possible message.
let message = [0; MAX_DATA_LEN];
let protobuf = Message {
flag: Some(Flag::FIN),
message: Some(message.to_vec()),
};
let mut codec = codec();
let mut dst = BytesMut::new();
codec.encode(protobuf, &mut dst).unwrap();
// Ensure the varint prefixed and protobuf encoded largest message is no longer than the
// maximum limit specified in the libp2p WebRTC specification.
assert_eq!(dst.len(), MAX_MSG_LEN);
}
}