libsecp256k1_core/
group.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
use crate::field::{Field, FieldStorage};

#[derive(Debug, Clone, Copy, Eq, PartialEq)]
/// A group element of the secp256k1 curve, in affine coordinates.
pub struct Affine {
    pub x: Field,
    pub y: Field,
    pub infinity: bool,
}

#[derive(Debug, Clone, Copy)]
/// A group element of the secp256k1 curve, in jacobian coordinates.
pub struct Jacobian {
    pub x: Field,
    pub y: Field,
    pub z: Field,
    pub infinity: bool,
}

#[derive(Debug, Clone, Copy, Eq, PartialEq)]
/// Affine coordinate group element compact storage.
pub struct AffineStorage {
    pub x: FieldStorage,
    pub y: FieldStorage,
}

impl Default for Affine {
    fn default() -> Affine {
        Affine {
            x: Field::default(),
            y: Field::default(),
            infinity: false,
        }
    }
}

impl Default for Jacobian {
    fn default() -> Jacobian {
        Jacobian {
            x: Field::default(),
            y: Field::default(),
            z: Field::default(),
            infinity: false,
        }
    }
}

impl Default for AffineStorage {
    fn default() -> AffineStorage {
        AffineStorage {
            x: FieldStorage::default(),
            y: FieldStorage::default(),
        }
    }
}

pub static AFFINE_INFINITY: Affine = Affine {
    x: Field::new(0, 0, 0, 0, 0, 0, 0, 0),
    y: Field::new(0, 0, 0, 0, 0, 0, 0, 0),
    infinity: true,
};

pub static JACOBIAN_INFINITY: Jacobian = Jacobian {
    x: Field::new(0, 0, 0, 0, 0, 0, 0, 0),
    y: Field::new(0, 0, 0, 0, 0, 0, 0, 0),
    z: Field::new(0, 0, 0, 0, 0, 0, 0, 0),
    infinity: true,
};

pub static AFFINE_G: Affine = Affine::new(
    Field::new(
        0x79BE667E, 0xF9DCBBAC, 0x55A06295, 0xCE870B07, 0x029BFCDB, 0x2DCE28D9, 0x59F2815B,
        0x16F81798,
    ),
    Field::new(
        0x483ADA77, 0x26A3C465, 0x5DA4FBFC, 0x0E1108A8, 0xFD17B448, 0xA6855419, 0x9C47D08F,
        0xFB10D4B8,
    ),
);

pub const CURVE_B: u32 = 7;

impl Affine {
    /// Create a new affine.
    pub const fn new(x: Field, y: Field) -> Self {
        Self {
            x,
            y,
            infinity: false,
        }
    }

    /// Set a group element equal to the point with given X and Y
    /// coordinates.
    pub fn set_xy(&mut self, x: &Field, y: &Field) {
        self.infinity = false;
        self.x = *x;
        self.y = *y;
    }

    /// Set a group element (affine) equal to the point with the given
    /// X coordinate and a Y coordinate that is a quadratic residue
    /// modulo p. The return value is true iff a coordinate with the
    /// given X coordinate exists.
    pub fn set_xquad(&mut self, x: &Field) -> bool {
        self.x = *x;
        let x2 = x.sqr();
        let x3 = *x * x2;
        self.infinity = false;
        let mut c = Field::default();
        c.set_int(CURVE_B);
        c += x3;
        let (v, ret) = c.sqrt();
        self.y = v;
        ret
    }

    /// Set a group element (affine) equal to the point with the given
    /// X coordinate, and given oddness for Y. Return value indicates
    /// whether the result is valid.
    pub fn set_xo_var(&mut self, x: &Field, odd: bool) -> bool {
        if !self.set_xquad(x) {
            return false;
        }
        self.y.normalize_var();
        if self.y.is_odd() != odd {
            self.y = self.y.neg(1);
        }
        true
    }

    /// Check whether a group element is the point at infinity.
    pub fn is_infinity(&self) -> bool {
        self.infinity
    }

    /// Check whether a group element is valid (i.e., on the curve).
    pub fn is_valid_var(&self) -> bool {
        if self.is_infinity() {
            return false;
        }
        let y2 = self.y.sqr();
        let mut x3 = self.x.sqr();
        x3 *= &self.x;
        let mut c = Field::default();
        c.set_int(CURVE_B);
        x3 += &c;
        x3.normalize_weak();
        y2.eq_var(&x3)
    }

    pub fn neg_in_place(&mut self, other: &Affine) {
        *self = *other;
        self.y.normalize_weak();
        self.y = self.y.neg(1);
    }

    pub fn neg(&self) -> Affine {
        let mut ret = Affine::default();
        ret.neg_in_place(self);
        ret
    }

    /// Set a group element equal to another which is given in
    /// jacobian coordinates.
    pub fn set_gej(&mut self, a: &Jacobian) {
        self.infinity = a.infinity;
        let mut a = *a;
        a.z = a.z.inv();
        let z2 = a.z.sqr();
        let z3 = a.z * z2;
        a.x *= z2;
        a.y *= z3;
        a.z.set_int(1);
        self.x = a.x;
        self.y = a.y;
    }

    pub fn from_gej(a: &Jacobian) -> Self {
        let mut ge = Self::default();
        ge.set_gej(a);
        ge
    }

    pub fn set_gej_var(&mut self, a: &Jacobian) {
        let mut a = *a;
        self.infinity = a.infinity;
        if a.is_infinity() {
            return;
        }
        a.z = a.z.inv_var();
        let z2 = a.z.sqr();
        let z3 = a.z * z2;
        a.x *= &z2;
        a.y *= &z3;
        a.z.set_int(1);
        self.x = a.x;
        self.y = a.y;
    }

    pub fn set_gej_zinv(&mut self, a: &Jacobian, zi: &Field) {
        let zi2 = zi.sqr();
        let zi3 = zi2 * *zi;
        self.x = a.x * zi2;
        self.y = a.y * zi3;
        self.infinity = a.infinity;
    }

    /// Clear a secp256k1_ge to prevent leaking sensitive information.
    pub fn clear(&mut self) {
        self.infinity = false;
        self.x.clear();
        self.y.clear();
    }
}

pub fn set_table_gej_var(r: &mut [Affine], a: &[Jacobian], zr: &[Field]) {
    debug_assert!(r.len() == a.len());

    let mut i = r.len() - 1;
    let mut zi: Field;

    if !r.is_empty() {
        zi = a[i].z.inv();
        r[i].set_gej_zinv(&a[i], &zi);

        while i > 0 {
            zi *= &zr[i];
            i -= 1;
            r[i].set_gej_zinv(&a[i], &zi);
        }
    }
}

pub fn globalz_set_table_gej(r: &mut [Affine], globalz: &mut Field, a: &[Jacobian], zr: &[Field]) {
    debug_assert!(r.len() == a.len() && a.len() == zr.len());

    let mut i = r.len() - 1;
    let mut zs: Field;

    if !r.is_empty() {
        r[i].x = a[i].x;
        r[i].y = a[i].y;
        *globalz = a[i].z;
        r[i].infinity = false;
        zs = zr[i];

        while i > 0 {
            if i != r.len() - 1 {
                zs *= zr[i];
            }
            i -= 1;
            r[i].set_gej_zinv(&a[i], &zs);
        }
    }
}

impl Jacobian {
    /// Create a new jacobian.
    pub const fn new(x: Field, y: Field) -> Self {
        Self {
            x,
            y,
            infinity: false,
            z: Field::new(0, 0, 0, 0, 0, 0, 0, 1),
        }
    }

    /// Set a group element (jacobian) equal to the point at infinity.
    pub fn set_infinity(&mut self) {
        self.infinity = true;
        self.x.clear();
        self.y.clear();
        self.z.clear();
    }

    /// Set a group element (jacobian) equal to another which is given
    /// in affine coordinates.
    pub fn set_ge(&mut self, a: &Affine) {
        self.infinity = a.infinity;
        self.x = a.x;
        self.y = a.y;
        self.z.set_int(1);
    }

    pub fn from_ge(a: &Affine) -> Self {
        let mut gej = Self::default();
        gej.set_ge(a);
        gej
    }

    /// Compare the X coordinate of a group element (jacobian).
    pub fn eq_x_var(&self, x: &Field) -> bool {
        debug_assert!(!self.is_infinity());
        let mut r = self.z.sqr();
        r *= x;
        let mut r2 = self.x;
        r2.normalize_weak();
        r.eq_var(&r2)
    }

    /// Set r equal to the inverse of a (i.e., mirrored around the X
    /// axis).
    pub fn neg_in_place(&mut self, a: &Jacobian) {
        self.infinity = a.infinity;
        self.x = a.x;
        self.y = a.y;
        self.z = a.z;
        self.y.normalize_weak();
        self.y = self.y.neg(1);
    }

    pub fn neg(&self) -> Jacobian {
        let mut ret = Jacobian::default();
        ret.neg_in_place(self);
        ret
    }

    /// Check whether a group element is the point at infinity.
    pub fn is_infinity(&self) -> bool {
        self.infinity
    }

    /// Check whether a group element's y coordinate is a quadratic residue.
    pub fn has_quad_y_var(&self) -> bool {
        if self.infinity {
            return false;
        }

        let yz = self.y * self.z;
        yz.is_quad_var()
    }

    /// Set r equal to the double of a. If rzr is not-NULL, r->z =
    /// a->z * *rzr (where infinity means an implicit z = 0). a may
    /// not be zero. Constant time.
    pub fn double_nonzero_in_place(&mut self, a: &Jacobian, rzr: Option<&mut Field>) {
        debug_assert!(!self.is_infinity());
        self.double_var_in_place(a, rzr);
    }

    /// Set r equal to the double of a. If rzr is not-NULL, r->z =
    /// a->z * *rzr (where infinity means an implicit z = 0).
    pub fn double_var_in_place(&mut self, a: &Jacobian, rzr: Option<&mut Field>) {
        self.infinity = a.infinity;
        if self.infinity {
            if let Some(rzr) = rzr {
                rzr.set_int(1);
            }
            return;
        }

        if let Some(rzr) = rzr {
            *rzr = a.y;
            rzr.normalize_weak();
            rzr.mul_int(2);
        }

        self.z = a.z * a.y;
        self.z.mul_int(2);
        let mut t1 = a.x.sqr();
        t1.mul_int(3);
        let mut t2 = t1.sqr();
        let mut t3 = a.y.sqr();
        t3.mul_int(2);
        let mut t4 = t3.sqr();
        t4.mul_int(2);
        t3 *= &a.x;
        self.x = t3;
        self.x.mul_int(4);
        self.x = self.x.neg(4);
        self.x += &t2;
        t2 = t2.neg(1);
        t3.mul_int(6);
        t3 += &t2;
        self.y = t1 * t3;
        t2 = t4.neg(2);
        self.y += t2;
    }

    pub fn double_var(&self, rzr: Option<&mut Field>) -> Jacobian {
        let mut ret = Jacobian::default();
        ret.double_var_in_place(&self, rzr);
        ret
    }

    /// Set r equal to the sum of a and b. If rzr is non-NULL, r->z =
    /// a->z * *rzr (a cannot be infinity in that case).
    pub fn add_var_in_place(&mut self, a: &Jacobian, b: &Jacobian, rzr: Option<&mut Field>) {
        if a.is_infinity() {
            debug_assert!(rzr.is_none());
            *self = *b;
            return;
        }
        if b.is_infinity() {
            if let Some(rzr) = rzr {
                rzr.set_int(1);
            }
            *self = *a;
            return;
        }

        self.infinity = false;
        let z22 = b.z.sqr();
        let z12 = a.z.sqr();
        let u1 = a.x * z22;
        let u2 = b.x * z12;
        let mut s1 = a.y * z22;
        s1 *= b.z;
        let mut s2 = b.y * z12;
        s2 *= a.z;
        let mut h = u1.neg(1);
        h += u2;
        let mut i = s1.neg(1);
        i += s2;
        if h.normalizes_to_zero_var() {
            if i.normalizes_to_zero_var() {
                self.double_var_in_place(a, rzr);
            } else {
                if let Some(rzr) = rzr {
                    rzr.set_int(0);
                }
                self.infinity = true;
            }
            return;
        }
        let i2 = i.sqr();
        let h2 = h.sqr();
        let mut h3 = h * h2;
        h *= b.z;
        if let Some(rzr) = rzr {
            *rzr = h;
        }
        self.z = a.z * h;
        let t = u1 * h2;
        self.x = t;
        self.x.mul_int(2);
        self.x += h3;
        self.x = self.x.neg(3);
        self.x += i2;
        self.y = self.x.neg(5);
        self.y += t;
        self.y *= i;
        h3 *= s1;
        h3 = h3.neg(1);
        self.y += h3;
    }

    pub fn add_var(&self, b: &Jacobian, rzr: Option<&mut Field>) -> Jacobian {
        let mut ret = Jacobian::default();
        ret.add_var_in_place(self, b, rzr);
        ret
    }

    /// Set r equal to the sum of a and b (with b given in affine
    /// coordinates, and not infinity).
    pub fn add_ge_in_place(&mut self, a: &Jacobian, b: &Affine) {
        const FE1: Field = Field::new(0, 0, 0, 0, 0, 0, 0, 1);

        debug_assert!(!b.infinity);

        let zz = a.z.sqr();
        let mut u1 = a.x;
        u1.normalize_weak();
        let u2 = b.x * zz;
        let mut s1 = a.y;
        s1.normalize_weak();
        let mut s2 = b.y * zz;
        s2 *= a.z;
        let mut t = u1;
        t += u2;
        let mut m = s1;
        m += s2;
        let mut rr = t.sqr();
        let mut m_alt = u2.neg(1);
        let tt = u1 * m_alt;
        rr += tt;
        let degenerate = m.normalizes_to_zero() && rr.normalizes_to_zero();
        let mut rr_alt = s1;
        rr_alt.mul_int(2);
        m_alt += u1;

        rr_alt.cmov(&rr, !degenerate);
        m_alt.cmov(&m, !degenerate);

        let mut n = m_alt.sqr();
        let mut q = n * t;

        n = n.sqr();
        n.cmov(&m, degenerate);
        t = rr_alt.sqr();
        self.z = a.z * m_alt;
        let infinity = {
            let p = self.z.normalizes_to_zero();
            let q = a.infinity;

            match (p, q) {
                (true, true) => false,
                (true, false) => true,
                (false, true) => false,
                (false, false) => false,
            }
        };
        self.z.mul_int(2);
        q = q.neg(1);
        t += q;
        t.normalize_weak();
        self.x = t;
        t.mul_int(2);
        t += q;
        t *= rr_alt;
        t += n;
        self.y = t.neg(3);
        self.y.normalize_weak();
        self.x.mul_int(4);
        self.y.mul_int(4);

        self.x.cmov(&b.x, a.infinity);
        self.y.cmov(&b.y, a.infinity);
        self.z.cmov(&FE1, a.infinity);
        self.infinity = infinity;
    }

    pub fn add_ge(&self, b: &Affine) -> Jacobian {
        let mut ret = Jacobian::default();
        ret.add_ge_in_place(self, b);
        ret
    }

    /// Set r equal to the sum of a and b (with b given in affine
    /// coordinates). This is more efficient than
    /// secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge
    /// but without constant-time guarantee, and b is allowed to be
    /// infinity. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be
    /// infinity in that case).
    pub fn add_ge_var_in_place(&mut self, a: &Jacobian, b: &Affine, rzr: Option<&mut Field>) {
        if a.is_infinity() {
            debug_assert!(rzr.is_none());
            self.set_ge(b);
            return;
        }
        if b.is_infinity() {
            if let Some(rzr) = rzr {
                rzr.set_int(1);
            }
            *self = *a;
            return;
        }
        self.infinity = false;

        let z12 = a.z.sqr();
        let mut u1 = a.x;
        u1.normalize_weak();
        let u2 = b.x * z12;
        let mut s1 = a.y;
        s1.normalize_weak();
        let mut s2 = b.y * z12;
        s2 *= a.z;
        let mut h = u1.neg(1);
        h += u2;
        let mut i = s1.neg(1);
        i += s2;
        if h.normalizes_to_zero_var() {
            if i.normalizes_to_zero_var() {
                self.double_var_in_place(a, rzr);
            } else {
                if let Some(rzr) = rzr {
                    rzr.set_int(0);
                }
                self.infinity = true;
            }
            return;
        }
        let i2 = i.sqr();
        let h2 = h.sqr();
        let mut h3 = h * h2;
        if let Some(rzr) = rzr {
            *rzr = h;
        }
        self.z = a.z * h;
        let t = u1 * h2;
        self.x = t;
        self.x.mul_int(2);
        self.x += h3;
        self.x = self.x.neg(3);
        self.x += i2;
        self.y = self.x.neg(5);
        self.y += t;
        self.y *= i;
        h3 *= s1;
        h3 = h3.neg(1);
        self.y += h3;
    }

    pub fn add_ge_var(&self, b: &Affine, rzr: Option<&mut Field>) -> Jacobian {
        let mut ret = Jacobian::default();
        ret.add_ge_var_in_place(&self, b, rzr);
        ret
    }

    /// Set r equal to the sum of a and b (with the inverse of b's Z
    /// coordinate passed as bzinv).
    pub fn add_zinv_var_in_place(&mut self, a: &Jacobian, b: &Affine, bzinv: &Field) {
        if b.is_infinity() {
            *self = *a;
            return;
        }
        if a.is_infinity() {
            self.infinity = b.infinity;
            let bzinv2 = bzinv.sqr();
            let bzinv3 = &bzinv2 * bzinv;
            self.x = b.x * bzinv2;
            self.y = b.y * bzinv3;
            self.z.set_int(1);
            return;
        }
        self.infinity = false;

        let az = a.z * *bzinv;
        let z12 = az.sqr();
        let mut u1 = a.x;
        u1.normalize_weak();
        let u2 = b.x * z12;
        let mut s1 = a.y;
        s1.normalize_weak();
        let mut s2 = b.y * z12;
        s2 *= &az;
        let mut h = u1.neg(1);
        h += &u2;
        let mut i = s1.neg(1);
        i += &s2;
        if h.normalizes_to_zero_var() {
            if i.normalizes_to_zero_var() {
                self.double_var_in_place(a, None);
            } else {
                self.infinity = true;
            }
            return;
        }
        let i2 = i.sqr();
        let h2 = h.sqr();
        let mut h3 = h * h2;
        self.z = a.z;
        self.z *= h;
        let t = u1 * h2;
        self.x = t;
        self.x.mul_int(2);
        self.x += h3;
        self.x = self.x.neg(3);
        self.x += i2;
        self.y = self.x.neg(5);
        self.y += t;
        self.y *= i;
        h3 *= s1;
        h3 = h3.neg(1);
        self.y += h3;
    }

    pub fn add_zinv_var(&mut self, b: &Affine, bzinv: &Field) -> Jacobian {
        let mut ret = Jacobian::default();
        ret.add_zinv_var_in_place(&self, b, bzinv);
        ret
    }

    /// Clear a secp256k1_gej to prevent leaking sensitive
    /// information.
    pub fn clear(&mut self) {
        self.infinity = false;
        self.x.clear();
        self.y.clear();
        self.z.clear();
    }

    /// Rescale a jacobian point by b which must be
    /// non-zero. Constant-time.
    pub fn rescale(&mut self, s: &Field) {
        debug_assert!(!s.is_zero());
        let zz = s.sqr();
        self.x *= &zz;
        self.y *= &zz;
        self.y *= s;
        self.z *= s;
    }
}

impl From<AffineStorage> for Affine {
    fn from(a: AffineStorage) -> Affine {
        Affine::new(a.x.into(), a.y.into())
    }
}

impl Into<AffineStorage> for Affine {
    fn into(mut self) -> AffineStorage {
        debug_assert!(!self.is_infinity());
        self.x.normalize();
        self.y.normalize();
        AffineStorage::new(self.x.into(), self.y.into())
    }
}

impl AffineStorage {
    /// Create a new affine storage.
    pub const fn new(x: FieldStorage, y: FieldStorage) -> Self {
        Self { x, y }
    }

    /// If flag is true, set *r equal to *a; otherwise leave
    /// it. Constant-time.
    pub fn cmov(&mut self, a: &AffineStorage, flag: bool) {
        self.x.cmov(&a.x, flag);
        self.y.cmov(&a.y, flag);
    }
}