linear_map/
set.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
//! A set implemented by searching linearly in a vector.
//!
//! See the [`LinearSet`](struct.LinearSet.html) type for details.

use std::borrow::Borrow;
use std::fmt;
use std::iter::{Chain, FromIterator};
use std::ops::{BitOr, BitAnd, BitXor, Sub};

use super::{LinearMap, Keys};

/// An implementation of a set using the underlying representation of a
/// LinearMap where the value is ().
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
/// // Type inference lets us omit an explicit type signature (which
/// // would be `LinearSet<&str>` in this example).
/// let mut books = LinearSet::new();
///
/// // Add some books.
/// books.insert("A Dance With Dragons");
/// books.insert("To Kill a Mockingbird");
/// books.insert("The Odyssey");
/// books.insert("The Great Gatsby");
///
/// // Check for a specific one.
/// if !books.contains("The Winds of Winter") {
///     println!("We have {} books, but The Winds of Winter ain't one.",
///              books.len());
/// }
///
/// // Remove a book.
/// books.remove("The Odyssey");
///
/// // Iterate over everything.
/// for book in &books {
///     println!("{}", book);
/// }
/// ```
///
/// The easiest way to use `LinearSet` with a custom type is to derive
/// `Eq`. We must also derive `PartialEq`, this will in the
/// future be implied by `Eq`.
///
/// ```
/// use linear_map::set::LinearSet;;
/// #[derive(Eq, PartialEq, Debug)]
/// struct Viking<'a> {
///     name: &'a str,
///     power: usize,
/// }
///
/// let mut vikings = LinearSet::new();
///
/// vikings.insert(Viking { name: "Einar", power: 9 });
/// vikings.insert(Viking { name: "Einar", power: 9 });
/// vikings.insert(Viking { name: "Olaf", power: 4 });
/// vikings.insert(Viking { name: "Harald", power: 8 });
///
/// // Use derived implementation to print the vikings.
/// for x in &vikings {
///     println!("{:?}", x);
/// }
/// ```
#[derive(Clone)]
pub struct LinearSet<T> {
    map: LinearMap<T, ()>
}

impl<T: Eq> LinearSet<T> {
    /// Creates an empty LinearSet.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    /// let mut set: LinearSet<i32> = LinearSet::new();
    /// ```
    #[inline]

    pub fn new() -> LinearSet<T> {
        LinearSet { map: LinearMap::new() }
    }

    /// Creates an empty LinearSet with space for at least `n` elements in
    /// the map.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    /// let mut set: LinearSet<i32> = LinearSet::with_capacity(10);
    /// ```
    #[inline]
    pub fn with_capacity(capacity: usize) -> LinearSet<T> {
        LinearSet { map: LinearMap::with_capacity(capacity) }
    }
}

impl<T> LinearSet<T>
    where T: Eq
{
    /// Returns the number of elements the set can hold without reallocating.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    /// let set: LinearSet<i32> = LinearSet::with_capacity(100);
    /// assert!(set.capacity() >= 100);
    /// ```
    #[inline]

    pub fn capacity(&self) -> usize {
        self.map.capacity()
    }

    /// Reserves capacity for at least `additional` more elements to be inserted
    /// in the `LinearSet`. The collection may reserve more space to avoid
    /// frequent reallocations.
    ///
    /// # Panics
    ///
    /// Panics if the new allocation size overflows `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    /// let mut set: LinearSet<i32> = LinearSet::new();
    /// set.reserve(10);
    /// ```

    pub fn reserve(&mut self, additional: usize) {
        self.map.reserve(additional)
    }

    /// Shrinks the capacity of the set as much as possible. It will drop
    /// down as much as possible while maintaining the internal rules
    /// and possibly leaving some space in accordance with the resize policy.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    ///
    /// let mut set = LinearSet::with_capacity(100);
    /// set.insert(1);
    /// set.insert(2);
    /// assert!(set.capacity() >= 100);
    /// set.shrink_to_fit();
    /// assert!(set.capacity() >= 2);
    /// ```

    pub fn shrink_to_fit(&mut self) {
        self.map.shrink_to_fit()
    }

    /// An iterator visiting all elements in arbitrary order.
    /// Iterator element type is &'a T.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    /// let mut set = LinearSet::new();
    /// set.insert("a");
    /// set.insert("b");
    ///
    /// // Will print in an arbitrary order.
    /// for x in set.iter() {
    ///     println!("{}", x);
    /// }
    /// ```

    pub fn iter(&self) -> Iter<T> {
        Iter { iter: self.map.keys() }
    }

    /// Visit the values representing the difference.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    /// let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
    /// let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();
    ///
    /// // Can be seen as `a - b`.
    /// for x in a.difference(&b) {
    ///     println!("{}", x); // Print 1
    /// }
    ///
    /// let diff: LinearSet<_> = a.difference(&b).cloned().collect();
    /// assert_eq!(diff, [1].iter().cloned().collect());
    ///
    /// // Note that difference is not symmetric,
    /// // and `b - a` means something else:
    /// let diff: LinearSet<_> = b.difference(&a).cloned().collect();
    /// assert_eq!(diff, [4].iter().cloned().collect());
    /// ```

    pub fn difference<'a>(&'a self, other: &'a LinearSet<T>) -> Difference<'a, T> {
        Difference {
            iter: self.iter(),
            other: other,
        }
    }

    /// Visit the values representing the symmetric difference.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    /// let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
    /// let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();
    ///
    /// // Print 1, 4 in arbitrary order.
    /// for x in a.symmetric_difference(&b) {
    ///     println!("{}", x);
    /// }
    ///
    /// let diff1: LinearSet<_> = a.symmetric_difference(&b).cloned().collect();
    /// let diff2: LinearSet<_> = b.symmetric_difference(&a).cloned().collect();
    ///
    /// assert_eq!(diff1, diff2);
    /// assert_eq!(diff1, [1, 4].iter().cloned().collect());
    /// ```

    pub fn symmetric_difference<'a>(&'a self, other: &'a LinearSet<T>)
        -> SymmetricDifference<'a, T> {
        SymmetricDifference { iter: self.difference(other).chain(other.difference(self)) }
    }

    /// Visit the values representing the intersection.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    /// let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
    /// let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();
    ///
    /// // Print 2, 3 in arbitrary order.
    /// for x in a.intersection(&b) {
    ///     println!("{}", x);
    /// }
    ///
    /// let intersection: LinearSet<_> = a.intersection(&b).cloned().collect();
    /// assert_eq!(intersection, [2, 3].iter().cloned().collect());
    /// ```

    pub fn intersection<'a>(&'a self, other: &'a LinearSet<T>) -> Intersection<'a, T> {
        Intersection {
            iter: self.iter(),
            other: other,
        }
    }

    /// Visit the values representing the union.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    /// let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
    /// let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();
    ///
    /// // Print 1, 2, 3, 4 in arbitrary order.
    /// for x in a.union(&b) {
    ///     println!("{}", x);
    /// }
    ///
    /// let union: LinearSet<_> = a.union(&b).cloned().collect();
    /// assert_eq!(union, [1, 2, 3, 4].iter().cloned().collect());
    /// ```

    pub fn union<'a>(&'a self, other: &'a LinearSet<T>) -> Union<'a, T> {
        Union { iter: self.iter().chain(other.difference(self)) }
    }

    /// Returns the number of elements in the set.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    ///
    /// let mut v = LinearSet::new();
    /// assert_eq!(v.len(), 0);
    /// v.insert(1);
    /// assert_eq!(v.len(), 1);
    /// ```

    pub fn len(&self) -> usize { self.map.len() }

    /// Returns true if the set contains no elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    ///
    /// let mut v = LinearSet::new();
    /// assert!(v.is_empty());
    /// v.insert(1);
    /// assert!(!v.is_empty());
    /// ```

    pub fn is_empty(&self) -> bool { self.map.is_empty() }

    /// Clears the set, returning all elements in an iterator.
    #[inline]
    pub fn drain(&mut self) -> Drain<T> {
        Drain { iter: self.map.drain() }
    }

    /// Clears the set, removing all values.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    ///
    /// let mut v = LinearSet::new();
    /// v.insert(1);
    /// v.clear();
    /// assert!(v.is_empty());
    /// ```
    pub fn clear(&mut self) { self.map.clear() }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
    ///
    pub fn retain<F>(&mut self, mut f: F)
    where F: FnMut(&T) -> bool {
        self.map.retain(|k, _| f(k));
    }

    /// Returns `true` if the set contains a value.
    ///
    /// The value may be any borrowed form of the set's value type, but
    /// `Eq` on the borrowed form *must* match those for
    /// the value type.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    ///
    /// let set: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
    /// assert_eq!(set.contains(&1), true);
    /// assert_eq!(set.contains(&4), false);
    /// ```
    pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool
        where T: Borrow<Q>, Q: Eq
    {
        self.map.contains_key(value)
    }

    /// Returns `true` if the set has no elements in common with `other`.
    /// This is equivalent to checking for an empty intersection.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    ///
    /// let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
    /// let mut b = LinearSet::new();
    ///
    /// assert_eq!(a.is_disjoint(&b), true);
    /// b.insert(4);
    /// assert_eq!(a.is_disjoint(&b), true);
    /// b.insert(1);
    /// assert_eq!(a.is_disjoint(&b), false);
    /// ```

    pub fn is_disjoint(&self, other: &LinearSet<T>) -> bool {
        self.iter().all(|v| !other.contains(v))
    }

    /// Returns `true` if the set is a subset of another.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    ///
    /// let sup: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
    /// let mut set = LinearSet::new();
    ///
    /// assert_eq!(set.is_subset(&sup), true);
    /// set.insert(2);
    /// assert_eq!(set.is_subset(&sup), true);
    /// set.insert(4);
    /// assert_eq!(set.is_subset(&sup), false);
    /// ```

    pub fn is_subset(&self, other: &LinearSet<T>) -> bool {
        self.iter().all(|v| other.contains(v))
    }

    /// Returns `true` if the set is a superset of another.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    ///
    /// let sub: LinearSet<_> = [1, 2].iter().cloned().collect();
    /// let mut set = LinearSet::new();
    ///
    /// assert_eq!(set.is_superset(&sub), false);
    ///
    /// set.insert(0);
    /// set.insert(1);
    /// assert_eq!(set.is_superset(&sub), false);
    ///
    /// set.insert(2);
    /// assert_eq!(set.is_superset(&sub), true);
    /// ```
    #[inline]

    pub fn is_superset(&self, other: &LinearSet<T>) -> bool {
        other.is_subset(self)
    }

    /// Adds a value to the set.
    ///
    /// If the set did not have a value present, `true` is returned.
    ///
    /// If the set did have this key present, `false` is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    ///
    /// let mut set = LinearSet::new();
    ///
    /// assert_eq!(set.insert(2), true);
    /// assert_eq!(set.insert(2), false);
    /// assert_eq!(set.len(), 1);
    /// ```

    pub fn insert(&mut self, value: T) -> bool { self.map.insert(value, ()).is_none() }

    /// Removes a value from the set. Returns `true` if the value was
    /// present in the set.
    ///
    /// The value may be any borrowed form of the set's value type, but
    /// `Eq` on the borrowed form *must* match those for
    /// the value type.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    ///
    /// let mut set = LinearSet::new();
    ///
    /// set.insert(2);
    /// assert_eq!(set.remove(&2), true);
    /// assert_eq!(set.remove(&2), false);
    /// ```

    pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool
        where T: Borrow<Q>, Q: Eq
    {
        self.map.remove(value).is_some()
    }

}

impl<T> PartialEq for LinearSet<T>
    where T: Eq
{
    fn eq(&self, other: &LinearSet<T>) -> bool {
        if self.len() != other.len() { return false; }

        self.iter().all(|key| other.contains(key))
    }
}

impl<T> Eq for LinearSet<T>
    where T: Eq
{}

impl<T> fmt::Debug for LinearSet<T>
    where T: Eq + fmt::Debug
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_set().entries(self.iter()).finish()
    }
}

impl<T> FromIterator<T> for LinearSet<T>
    where T: Eq
{
    fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> LinearSet<T> {
        let iterator = iter.into_iter();
        let lower = iterator.size_hint().0;
        let mut set = LinearSet::with_capacity(lower);
        set.extend(iterator);
        set
    }
}

impl<T> Extend<T> for LinearSet<T>
    where T: Eq
{
    fn extend<I: IntoIterator<Item=T>>(&mut self, iter: I) {
        for k in iter {
            self.insert(k);
        }
    }
}

impl<'a, T> Extend<&'a T> for LinearSet<T>
    where T: 'a + Eq + Copy
{
    fn extend<I: IntoIterator<Item=&'a T>>(&mut self, iter: I) {
        self.extend(iter.into_iter().cloned());
    }
}

impl<T> Default for LinearSet<T>
    where T: Eq
{
    fn default() -> LinearSet<T> {
        LinearSet::new()
    }
}

impl<K: Eq> Into<Vec<K>> for LinearSet<K> {
    fn into(self) -> Vec<K> {
        unsafe {
            use std::mem;
            mem::transmute(self)
        }
    }
}

impl<'a, 'b, T> BitOr<&'b LinearSet<T>> for &'a LinearSet<T>
    where T: Eq + Clone
{
    type Output = LinearSet<T>;

    /// Returns the union of `self` and `rhs` as a new `LinearSet<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    ///
    /// let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
    /// let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect();
    ///
    /// let set = &a | &b;
    ///
    /// let mut i = 0;
    /// let expected = [1, 2, 3, 4, 5];
    /// for x in &set {
    ///     assert!(expected.contains(x));
    ///     i += 1;
    /// }
    /// assert_eq!(i, expected.len());
    /// ```
    fn bitor(self, rhs: &LinearSet<T>) -> LinearSet<T> {
        self.union(rhs).cloned().collect()
    }
}

impl<'a, 'b, T> BitAnd<&'b LinearSet<T>> for &'a LinearSet<T>
    where T: Eq + Clone
{
    type Output = LinearSet<T>;

    /// Returns the intersection of `self` and `rhs` as a new `LinearSet<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    ///
    /// let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
    /// let b: LinearSet<_> = vec![2, 3, 4].into_iter().collect();
    ///
    /// let set = &a & &b;
    ///
    /// let mut i = 0;
    /// let expected = [2, 3];
    /// for x in &set {
    ///     assert!(expected.contains(x));
    ///     i += 1;
    /// }
    /// assert_eq!(i, expected.len());
    /// ```
    fn bitand(self, rhs: &LinearSet<T>) -> LinearSet<T> {
        self.intersection(rhs).cloned().collect()
    }
}

impl<'a, 'b, T> BitXor<&'b LinearSet<T>> for &'a LinearSet<T>
    where T: Eq + Clone
{
    type Output = LinearSet<T>;

    /// Returns the symmetric difference of `self` and `rhs` as a new `LinearSet<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    ///
    /// let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
    /// let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect();
    ///
    /// let set = &a ^ &b;
    ///
    /// let mut i = 0;
    /// let expected = [1, 2, 4, 5];
    /// for x in &set {
    ///     assert!(expected.contains(x));
    ///     i += 1;
    /// }
    /// assert_eq!(i, expected.len());
    /// ```
    fn bitxor(self, rhs: &LinearSet<T>) -> LinearSet<T> {
        self.symmetric_difference(rhs).cloned().collect()
    }
}

impl<'a, 'b, T> Sub<&'b LinearSet<T>> for &'a LinearSet<T>
    where T: Eq + Clone
{
    type Output = LinearSet<T>;

    /// Returns the difference of `self` and `rhs` as a new `LinearSet<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    ///
    /// let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
    /// let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect();
    ///
    /// let set = &a - &b;
    ///
    /// let mut i = 0;
    /// let expected = [1, 2];
    /// for x in &set {
    ///     assert!(expected.contains(x));
    ///     i += 1;
    /// }
    /// assert_eq!(i, expected.len());
    /// ```
    fn sub(self, rhs: &LinearSet<T>) -> LinearSet<T> {
        self.difference(rhs).cloned().collect()
    }
}

/// LinearSet iterator
pub struct Iter<'a, K: 'a> {
    iter: Keys<'a, K, ()>
}

/// LinearSet move iterator
pub struct IntoIter<K> {
    iter: super::IntoIter<K, ()>
}

/// LinearSet drain iterator
pub struct Drain<'a, K: 'a> {
    iter: super::Drain<'a, K, ()>,
}

/// Intersection iterator
pub struct Intersection<'a, T: 'a> {
    // iterator of the first set
    iter: Iter<'a, T>,
    // the second set
    other: &'a LinearSet<T>,
}

/// Difference iterator
pub struct Difference<'a, T: 'a> {
    // iterator of the first set
    iter: Iter<'a, T>,
    // the second set
    other: &'a LinearSet<T>,
}

/// Symmetric difference iterator.
pub struct SymmetricDifference<'a, T: 'a> {
    iter: Chain<Difference<'a, T>, Difference<'a, T>>
}

/// Set union iterator.
pub struct Union<'a, T: 'a> {
    iter: Chain<Iter<'a, T>, Difference<'a, T>>
}

impl<'a, T> IntoIterator for &'a LinearSet<T>
    where T: Eq
{
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Iter<'a, T> {
        self.iter()
    }
}

impl<T> IntoIterator for LinearSet<T>
    where T: Eq
{
    type Item = T;
    type IntoIter = IntoIter<T>;

    /// Creates a consuming iterator, that is, one that moves each value out
    /// of the set in arbitrary order. The set cannot be used after calling
    /// this.
    ///
    /// # Examples
    ///
    /// ```
    /// use linear_map::set::LinearSet;;
    /// let mut set = LinearSet::new();
    /// set.insert("a".to_string());
    /// set.insert("b".to_string());
    ///
    /// // Not possible to collect to a Vec<String> with a regular `.iter()`.
    /// let v: Vec<String> = set.into_iter().collect();
    ///
    /// // Will print in an arbitrary order.
    /// for x in &v {
    ///     println!("{}", x);
    /// }
    /// ```
    fn into_iter(self) -> IntoIter<T> {
        IntoIter { iter: self.map.into_iter() }
    }
}

impl<'a, K> Clone for Iter<'a, K> {
    fn clone(&self) -> Iter<'a, K> { Iter { iter: self.iter.clone() } }
}
impl<'a, K> Iterator for Iter<'a, K> {
    type Item = &'a K;

    fn next(&mut self) -> Option<&'a K> { self.iter.next() }
    fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
impl<'a, K> ExactSizeIterator for Iter<'a, K> {
    fn len(&self) -> usize { self.iter.len() }
}

impl<K> Iterator for IntoIter<K> {
    type Item = K;

    fn next(&mut self) -> Option<K> { self.iter.next().map(|(k, _)| k) }
    fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
impl<K> ExactSizeIterator for IntoIter<K> {
    fn len(&self) -> usize { self.iter.len() }
}

impl<'a, K> Iterator for Drain<'a, K> {
    type Item = K;

    fn next(&mut self) -> Option<K> { self.iter.next().map(|(k, _)| k) }
    fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
impl<'a, K> ExactSizeIterator for Drain<'a, K> {
    fn len(&self) -> usize { self.iter.len() }
}

impl<'a, T> Clone for Intersection<'a, T> {
    fn clone(&self) -> Intersection<'a, T> {
        Intersection { iter: self.iter.clone(), ..*self }
    }
}

impl<'a, T> Iterator for Intersection<'a, T>
    where T: Eq
{
    type Item = &'a T;

    fn next(&mut self) -> Option<&'a T> {
        loop {
            match self.iter.next() {
                None => return None,
                Some(elt) => if self.other.contains(elt) {
                    return Some(elt)
                },
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let (_, upper) = self.iter.size_hint();
        (0, upper)
    }
}

impl<'a, T> Clone for Difference<'a, T> {
    fn clone(&self) -> Difference<'a, T> {
        Difference { iter: self.iter.clone(), ..*self }
    }
}

impl<'a, T> Iterator for Difference<'a, T>
    where T: Eq
{
    type Item = &'a T;

    fn next(&mut self) -> Option<&'a T> {
        loop {
            match self.iter.next() {
                None => return None,
                Some(elt) => if !self.other.contains(elt) {
                    return Some(elt)
                },
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let (_, upper) = self.iter.size_hint();
        (0, upper)
    }
}

impl<'a, T> Clone for SymmetricDifference<'a, T> {
    fn clone(&self) -> SymmetricDifference<'a, T> {
        SymmetricDifference { iter: self.iter.clone() }
    }
}

impl<'a, T> Iterator for SymmetricDifference<'a, T>
    where T: Eq
{
    type Item = &'a T;

    fn next(&mut self) -> Option<&'a T> { self.iter.next() }
    fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}

impl<'a, T> Clone for Union<'a, T> {
    fn clone(&self) -> Union<'a, T> { Union { iter: self.iter.clone() } }
}

impl<'a, T> Iterator for Union<'a, T>
    where T: Eq
{
    type Item = &'a T;

    fn next(&mut self) -> Option<&'a T> { self.iter.next() }
    fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}

#[allow(dead_code)]
fn assert_covariance() {
    fn set<'new>(v: LinearSet<&'static str>) -> LinearSet<&'new str> { v }
    fn iter<'a, 'new>(v: Iter<'a, &'static str>) -> Iter<'a, &'new str> { v }
    fn into_iter<'new>(v: IntoIter<&'static str>) -> IntoIter<&'new str> { v }
    fn difference<'a, 'new>(v: Difference<'a, &'static str>)
        -> Difference<'a, &'new str> { v }
    fn symmetric_difference<'a, 'new>(v: SymmetricDifference<'a, &'static str>)
        -> SymmetricDifference<'a, &'new str> { v }
    fn intersection<'a, 'new>(v: Intersection<'a, &'static str>)
        -> Intersection<'a, &'new str> { v }
    fn union<'a, 'new>(v: Union<'a, &'static str>)
        -> Union<'a, &'new str> { v }
}