linear_map/set.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
//! A set implemented by searching linearly in a vector.
//!
//! See the [`LinearSet`](struct.LinearSet.html) type for details.
use std::borrow::Borrow;
use std::fmt;
use std::iter::{Chain, FromIterator};
use std::ops::{BitOr, BitAnd, BitXor, Sub};
use super::{LinearMap, Keys};
/// An implementation of a set using the underlying representation of a
/// LinearMap where the value is ().
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
/// // Type inference lets us omit an explicit type signature (which
/// // would be `LinearSet<&str>` in this example).
/// let mut books = LinearSet::new();
///
/// // Add some books.
/// books.insert("A Dance With Dragons");
/// books.insert("To Kill a Mockingbird");
/// books.insert("The Odyssey");
/// books.insert("The Great Gatsby");
///
/// // Check for a specific one.
/// if !books.contains("The Winds of Winter") {
/// println!("We have {} books, but The Winds of Winter ain't one.",
/// books.len());
/// }
///
/// // Remove a book.
/// books.remove("The Odyssey");
///
/// // Iterate over everything.
/// for book in &books {
/// println!("{}", book);
/// }
/// ```
///
/// The easiest way to use `LinearSet` with a custom type is to derive
/// `Eq`. We must also derive `PartialEq`, this will in the
/// future be implied by `Eq`.
///
/// ```
/// use linear_map::set::LinearSet;;
/// #[derive(Eq, PartialEq, Debug)]
/// struct Viking<'a> {
/// name: &'a str,
/// power: usize,
/// }
///
/// let mut vikings = LinearSet::new();
///
/// vikings.insert(Viking { name: "Einar", power: 9 });
/// vikings.insert(Viking { name: "Einar", power: 9 });
/// vikings.insert(Viking { name: "Olaf", power: 4 });
/// vikings.insert(Viking { name: "Harald", power: 8 });
///
/// // Use derived implementation to print the vikings.
/// for x in &vikings {
/// println!("{:?}", x);
/// }
/// ```
#[derive(Clone)]
pub struct LinearSet<T> {
map: LinearMap<T, ()>
}
impl<T: Eq> LinearSet<T> {
/// Creates an empty LinearSet.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
/// let mut set: LinearSet<i32> = LinearSet::new();
/// ```
#[inline]
pub fn new() -> LinearSet<T> {
LinearSet { map: LinearMap::new() }
}
/// Creates an empty LinearSet with space for at least `n` elements in
/// the map.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
/// let mut set: LinearSet<i32> = LinearSet::with_capacity(10);
/// ```
#[inline]
pub fn with_capacity(capacity: usize) -> LinearSet<T> {
LinearSet { map: LinearMap::with_capacity(capacity) }
}
}
impl<T> LinearSet<T>
where T: Eq
{
/// Returns the number of elements the set can hold without reallocating.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
/// let set: LinearSet<i32> = LinearSet::with_capacity(100);
/// assert!(set.capacity() >= 100);
/// ```
#[inline]
pub fn capacity(&self) -> usize {
self.map.capacity()
}
/// Reserves capacity for at least `additional` more elements to be inserted
/// in the `LinearSet`. The collection may reserve more space to avoid
/// frequent reallocations.
///
/// # Panics
///
/// Panics if the new allocation size overflows `usize`.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
/// let mut set: LinearSet<i32> = LinearSet::new();
/// set.reserve(10);
/// ```
pub fn reserve(&mut self, additional: usize) {
self.map.reserve(additional)
}
/// Shrinks the capacity of the set as much as possible. It will drop
/// down as much as possible while maintaining the internal rules
/// and possibly leaving some space in accordance with the resize policy.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
///
/// let mut set = LinearSet::with_capacity(100);
/// set.insert(1);
/// set.insert(2);
/// assert!(set.capacity() >= 100);
/// set.shrink_to_fit();
/// assert!(set.capacity() >= 2);
/// ```
pub fn shrink_to_fit(&mut self) {
self.map.shrink_to_fit()
}
/// An iterator visiting all elements in arbitrary order.
/// Iterator element type is &'a T.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
/// let mut set = LinearSet::new();
/// set.insert("a");
/// set.insert("b");
///
/// // Will print in an arbitrary order.
/// for x in set.iter() {
/// println!("{}", x);
/// }
/// ```
pub fn iter(&self) -> Iter<T> {
Iter { iter: self.map.keys() }
}
/// Visit the values representing the difference.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
/// let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
/// let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();
///
/// // Can be seen as `a - b`.
/// for x in a.difference(&b) {
/// println!("{}", x); // Print 1
/// }
///
/// let diff: LinearSet<_> = a.difference(&b).cloned().collect();
/// assert_eq!(diff, [1].iter().cloned().collect());
///
/// // Note that difference is not symmetric,
/// // and `b - a` means something else:
/// let diff: LinearSet<_> = b.difference(&a).cloned().collect();
/// assert_eq!(diff, [4].iter().cloned().collect());
/// ```
pub fn difference<'a>(&'a self, other: &'a LinearSet<T>) -> Difference<'a, T> {
Difference {
iter: self.iter(),
other: other,
}
}
/// Visit the values representing the symmetric difference.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
/// let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
/// let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();
///
/// // Print 1, 4 in arbitrary order.
/// for x in a.symmetric_difference(&b) {
/// println!("{}", x);
/// }
///
/// let diff1: LinearSet<_> = a.symmetric_difference(&b).cloned().collect();
/// let diff2: LinearSet<_> = b.symmetric_difference(&a).cloned().collect();
///
/// assert_eq!(diff1, diff2);
/// assert_eq!(diff1, [1, 4].iter().cloned().collect());
/// ```
pub fn symmetric_difference<'a>(&'a self, other: &'a LinearSet<T>)
-> SymmetricDifference<'a, T> {
SymmetricDifference { iter: self.difference(other).chain(other.difference(self)) }
}
/// Visit the values representing the intersection.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
/// let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
/// let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();
///
/// // Print 2, 3 in arbitrary order.
/// for x in a.intersection(&b) {
/// println!("{}", x);
/// }
///
/// let intersection: LinearSet<_> = a.intersection(&b).cloned().collect();
/// assert_eq!(intersection, [2, 3].iter().cloned().collect());
/// ```
pub fn intersection<'a>(&'a self, other: &'a LinearSet<T>) -> Intersection<'a, T> {
Intersection {
iter: self.iter(),
other: other,
}
}
/// Visit the values representing the union.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
/// let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
/// let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();
///
/// // Print 1, 2, 3, 4 in arbitrary order.
/// for x in a.union(&b) {
/// println!("{}", x);
/// }
///
/// let union: LinearSet<_> = a.union(&b).cloned().collect();
/// assert_eq!(union, [1, 2, 3, 4].iter().cloned().collect());
/// ```
pub fn union<'a>(&'a self, other: &'a LinearSet<T>) -> Union<'a, T> {
Union { iter: self.iter().chain(other.difference(self)) }
}
/// Returns the number of elements in the set.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
///
/// let mut v = LinearSet::new();
/// assert_eq!(v.len(), 0);
/// v.insert(1);
/// assert_eq!(v.len(), 1);
/// ```
pub fn len(&self) -> usize { self.map.len() }
/// Returns true if the set contains no elements.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
///
/// let mut v = LinearSet::new();
/// assert!(v.is_empty());
/// v.insert(1);
/// assert!(!v.is_empty());
/// ```
pub fn is_empty(&self) -> bool { self.map.is_empty() }
/// Clears the set, returning all elements in an iterator.
#[inline]
pub fn drain(&mut self) -> Drain<T> {
Drain { iter: self.map.drain() }
}
/// Clears the set, removing all values.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
///
/// let mut v = LinearSet::new();
/// v.insert(1);
/// v.clear();
/// assert!(v.is_empty());
/// ```
pub fn clear(&mut self) { self.map.clear() }
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all elements `e` such that `f(&e)` returns `false`.
///
pub fn retain<F>(&mut self, mut f: F)
where F: FnMut(&T) -> bool {
self.map.retain(|k, _| f(k));
}
/// Returns `true` if the set contains a value.
///
/// The value may be any borrowed form of the set's value type, but
/// `Eq` on the borrowed form *must* match those for
/// the value type.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
///
/// let set: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
/// assert_eq!(set.contains(&1), true);
/// assert_eq!(set.contains(&4), false);
/// ```
pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool
where T: Borrow<Q>, Q: Eq
{
self.map.contains_key(value)
}
/// Returns `true` if the set has no elements in common with `other`.
/// This is equivalent to checking for an empty intersection.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
///
/// let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
/// let mut b = LinearSet::new();
///
/// assert_eq!(a.is_disjoint(&b), true);
/// b.insert(4);
/// assert_eq!(a.is_disjoint(&b), true);
/// b.insert(1);
/// assert_eq!(a.is_disjoint(&b), false);
/// ```
pub fn is_disjoint(&self, other: &LinearSet<T>) -> bool {
self.iter().all(|v| !other.contains(v))
}
/// Returns `true` if the set is a subset of another.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
///
/// let sup: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
/// let mut set = LinearSet::new();
///
/// assert_eq!(set.is_subset(&sup), true);
/// set.insert(2);
/// assert_eq!(set.is_subset(&sup), true);
/// set.insert(4);
/// assert_eq!(set.is_subset(&sup), false);
/// ```
pub fn is_subset(&self, other: &LinearSet<T>) -> bool {
self.iter().all(|v| other.contains(v))
}
/// Returns `true` if the set is a superset of another.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
///
/// let sub: LinearSet<_> = [1, 2].iter().cloned().collect();
/// let mut set = LinearSet::new();
///
/// assert_eq!(set.is_superset(&sub), false);
///
/// set.insert(0);
/// set.insert(1);
/// assert_eq!(set.is_superset(&sub), false);
///
/// set.insert(2);
/// assert_eq!(set.is_superset(&sub), true);
/// ```
#[inline]
pub fn is_superset(&self, other: &LinearSet<T>) -> bool {
other.is_subset(self)
}
/// Adds a value to the set.
///
/// If the set did not have a value present, `true` is returned.
///
/// If the set did have this key present, `false` is returned.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
///
/// let mut set = LinearSet::new();
///
/// assert_eq!(set.insert(2), true);
/// assert_eq!(set.insert(2), false);
/// assert_eq!(set.len(), 1);
/// ```
pub fn insert(&mut self, value: T) -> bool { self.map.insert(value, ()).is_none() }
/// Removes a value from the set. Returns `true` if the value was
/// present in the set.
///
/// The value may be any borrowed form of the set's value type, but
/// `Eq` on the borrowed form *must* match those for
/// the value type.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
///
/// let mut set = LinearSet::new();
///
/// set.insert(2);
/// assert_eq!(set.remove(&2), true);
/// assert_eq!(set.remove(&2), false);
/// ```
pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool
where T: Borrow<Q>, Q: Eq
{
self.map.remove(value).is_some()
}
}
impl<T> PartialEq for LinearSet<T>
where T: Eq
{
fn eq(&self, other: &LinearSet<T>) -> bool {
if self.len() != other.len() { return false; }
self.iter().all(|key| other.contains(key))
}
}
impl<T> Eq for LinearSet<T>
where T: Eq
{}
impl<T> fmt::Debug for LinearSet<T>
where T: Eq + fmt::Debug
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_set().entries(self.iter()).finish()
}
}
impl<T> FromIterator<T> for LinearSet<T>
where T: Eq
{
fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> LinearSet<T> {
let iterator = iter.into_iter();
let lower = iterator.size_hint().0;
let mut set = LinearSet::with_capacity(lower);
set.extend(iterator);
set
}
}
impl<T> Extend<T> for LinearSet<T>
where T: Eq
{
fn extend<I: IntoIterator<Item=T>>(&mut self, iter: I) {
for k in iter {
self.insert(k);
}
}
}
impl<'a, T> Extend<&'a T> for LinearSet<T>
where T: 'a + Eq + Copy
{
fn extend<I: IntoIterator<Item=&'a T>>(&mut self, iter: I) {
self.extend(iter.into_iter().cloned());
}
}
impl<T> Default for LinearSet<T>
where T: Eq
{
fn default() -> LinearSet<T> {
LinearSet::new()
}
}
impl<K: Eq> Into<Vec<K>> for LinearSet<K> {
fn into(self) -> Vec<K> {
unsafe {
use std::mem;
mem::transmute(self)
}
}
}
impl<'a, 'b, T> BitOr<&'b LinearSet<T>> for &'a LinearSet<T>
where T: Eq + Clone
{
type Output = LinearSet<T>;
/// Returns the union of `self` and `rhs` as a new `LinearSet<T>`.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
///
/// let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
/// let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect();
///
/// let set = &a | &b;
///
/// let mut i = 0;
/// let expected = [1, 2, 3, 4, 5];
/// for x in &set {
/// assert!(expected.contains(x));
/// i += 1;
/// }
/// assert_eq!(i, expected.len());
/// ```
fn bitor(self, rhs: &LinearSet<T>) -> LinearSet<T> {
self.union(rhs).cloned().collect()
}
}
impl<'a, 'b, T> BitAnd<&'b LinearSet<T>> for &'a LinearSet<T>
where T: Eq + Clone
{
type Output = LinearSet<T>;
/// Returns the intersection of `self` and `rhs` as a new `LinearSet<T>`.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
///
/// let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
/// let b: LinearSet<_> = vec![2, 3, 4].into_iter().collect();
///
/// let set = &a & &b;
///
/// let mut i = 0;
/// let expected = [2, 3];
/// for x in &set {
/// assert!(expected.contains(x));
/// i += 1;
/// }
/// assert_eq!(i, expected.len());
/// ```
fn bitand(self, rhs: &LinearSet<T>) -> LinearSet<T> {
self.intersection(rhs).cloned().collect()
}
}
impl<'a, 'b, T> BitXor<&'b LinearSet<T>> for &'a LinearSet<T>
where T: Eq + Clone
{
type Output = LinearSet<T>;
/// Returns the symmetric difference of `self` and `rhs` as a new `LinearSet<T>`.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
///
/// let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
/// let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect();
///
/// let set = &a ^ &b;
///
/// let mut i = 0;
/// let expected = [1, 2, 4, 5];
/// for x in &set {
/// assert!(expected.contains(x));
/// i += 1;
/// }
/// assert_eq!(i, expected.len());
/// ```
fn bitxor(self, rhs: &LinearSet<T>) -> LinearSet<T> {
self.symmetric_difference(rhs).cloned().collect()
}
}
impl<'a, 'b, T> Sub<&'b LinearSet<T>> for &'a LinearSet<T>
where T: Eq + Clone
{
type Output = LinearSet<T>;
/// Returns the difference of `self` and `rhs` as a new `LinearSet<T>`.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
///
/// let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
/// let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect();
///
/// let set = &a - &b;
///
/// let mut i = 0;
/// let expected = [1, 2];
/// for x in &set {
/// assert!(expected.contains(x));
/// i += 1;
/// }
/// assert_eq!(i, expected.len());
/// ```
fn sub(self, rhs: &LinearSet<T>) -> LinearSet<T> {
self.difference(rhs).cloned().collect()
}
}
/// LinearSet iterator
pub struct Iter<'a, K: 'a> {
iter: Keys<'a, K, ()>
}
/// LinearSet move iterator
pub struct IntoIter<K> {
iter: super::IntoIter<K, ()>
}
/// LinearSet drain iterator
pub struct Drain<'a, K: 'a> {
iter: super::Drain<'a, K, ()>,
}
/// Intersection iterator
pub struct Intersection<'a, T: 'a> {
// iterator of the first set
iter: Iter<'a, T>,
// the second set
other: &'a LinearSet<T>,
}
/// Difference iterator
pub struct Difference<'a, T: 'a> {
// iterator of the first set
iter: Iter<'a, T>,
// the second set
other: &'a LinearSet<T>,
}
/// Symmetric difference iterator.
pub struct SymmetricDifference<'a, T: 'a> {
iter: Chain<Difference<'a, T>, Difference<'a, T>>
}
/// Set union iterator.
pub struct Union<'a, T: 'a> {
iter: Chain<Iter<'a, T>, Difference<'a, T>>
}
impl<'a, T> IntoIterator for &'a LinearSet<T>
where T: Eq
{
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
impl<T> IntoIterator for LinearSet<T>
where T: Eq
{
type Item = T;
type IntoIter = IntoIter<T>;
/// Creates a consuming iterator, that is, one that moves each value out
/// of the set in arbitrary order. The set cannot be used after calling
/// this.
///
/// # Examples
///
/// ```
/// use linear_map::set::LinearSet;;
/// let mut set = LinearSet::new();
/// set.insert("a".to_string());
/// set.insert("b".to_string());
///
/// // Not possible to collect to a Vec<String> with a regular `.iter()`.
/// let v: Vec<String> = set.into_iter().collect();
///
/// // Will print in an arbitrary order.
/// for x in &v {
/// println!("{}", x);
/// }
/// ```
fn into_iter(self) -> IntoIter<T> {
IntoIter { iter: self.map.into_iter() }
}
}
impl<'a, K> Clone for Iter<'a, K> {
fn clone(&self) -> Iter<'a, K> { Iter { iter: self.iter.clone() } }
}
impl<'a, K> Iterator for Iter<'a, K> {
type Item = &'a K;
fn next(&mut self) -> Option<&'a K> { self.iter.next() }
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
impl<'a, K> ExactSizeIterator for Iter<'a, K> {
fn len(&self) -> usize { self.iter.len() }
}
impl<K> Iterator for IntoIter<K> {
type Item = K;
fn next(&mut self) -> Option<K> { self.iter.next().map(|(k, _)| k) }
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
impl<K> ExactSizeIterator for IntoIter<K> {
fn len(&self) -> usize { self.iter.len() }
}
impl<'a, K> Iterator for Drain<'a, K> {
type Item = K;
fn next(&mut self) -> Option<K> { self.iter.next().map(|(k, _)| k) }
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
impl<'a, K> ExactSizeIterator for Drain<'a, K> {
fn len(&self) -> usize { self.iter.len() }
}
impl<'a, T> Clone for Intersection<'a, T> {
fn clone(&self) -> Intersection<'a, T> {
Intersection { iter: self.iter.clone(), ..*self }
}
}
impl<'a, T> Iterator for Intersection<'a, T>
where T: Eq
{
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> {
loop {
match self.iter.next() {
None => return None,
Some(elt) => if self.other.contains(elt) {
return Some(elt)
},
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, upper) = self.iter.size_hint();
(0, upper)
}
}
impl<'a, T> Clone for Difference<'a, T> {
fn clone(&self) -> Difference<'a, T> {
Difference { iter: self.iter.clone(), ..*self }
}
}
impl<'a, T> Iterator for Difference<'a, T>
where T: Eq
{
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> {
loop {
match self.iter.next() {
None => return None,
Some(elt) => if !self.other.contains(elt) {
return Some(elt)
},
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, upper) = self.iter.size_hint();
(0, upper)
}
}
impl<'a, T> Clone for SymmetricDifference<'a, T> {
fn clone(&self) -> SymmetricDifference<'a, T> {
SymmetricDifference { iter: self.iter.clone() }
}
}
impl<'a, T> Iterator for SymmetricDifference<'a, T>
where T: Eq
{
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> { self.iter.next() }
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
impl<'a, T> Clone for Union<'a, T> {
fn clone(&self) -> Union<'a, T> { Union { iter: self.iter.clone() } }
}
impl<'a, T> Iterator for Union<'a, T>
where T: Eq
{
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> { self.iter.next() }
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
#[allow(dead_code)]
fn assert_covariance() {
fn set<'new>(v: LinearSet<&'static str>) -> LinearSet<&'new str> { v }
fn iter<'a, 'new>(v: Iter<'a, &'static str>) -> Iter<'a, &'new str> { v }
fn into_iter<'new>(v: IntoIter<&'static str>) -> IntoIter<&'new str> { v }
fn difference<'a, 'new>(v: Difference<'a, &'static str>)
-> Difference<'a, &'new str> { v }
fn symmetric_difference<'a, 'new>(v: SymmetricDifference<'a, &'static str>)
-> SymmetricDifference<'a, &'new str> { v }
fn intersection<'a, 'new>(v: Intersection<'a, &'static str>)
-> Intersection<'a, &'new str> { v }
fn union<'a, 'new>(v: Union<'a, &'static str>)
-> Union<'a, &'new str> { v }
}