1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
//! Locally Optimal Block Preconditioned Conjugated
//!
//! This module implements the Locally Optimal Block Preconditioned Conjugated (LOBPCG) algorithm,
//! which can be used as a solver for large symmetric eigenproblems.
use ndarray::concatenate;
use ndarray::prelude::*;
use num_traits::NumCast;
use std::iter::Sum;
use crate::{cholesky::*, eigh::*, norm::*, triangular::*};
use crate::{LinalgError, Order, Result};
use super::{Lobpcg, LobpcgResult};
/// Solve the generalized eigenvalue problem with pencil (A, B)
fn generalized_eig<A: NdFloat>(a: Array2<A>, b: Array2<A>) -> Result<(Array1<A>, Array2<A>)> {
let (vals_b, vecs_b) = b.eigh_into()?;
let vals_b_recip = vals_b.mapv_into(|x| (x.max(A::from(1e-10f32).unwrap())).sqrt().recip());
let vecs_b_tilde = vecs_b * vals_b_recip;
let a_tilde = vecs_b_tilde.t().dot(&a.dot(&vecs_b_tilde));
let (vals_a, vecs_a) = a_tilde.eigh_into()?;
let vecs = vecs_b_tilde.dot(&vecs_a);
Ok((vals_a, vecs))
}
/// Solve full eigenvalue problem, sort by `order` and truncate to `size`
fn sorted_eig<A: NdFloat>(
a: Array2<A>,
b: Option<Array2<A>>,
size: usize,
order: Order,
) -> Result<(Array1<A>, Array2<A>)> {
let res = match b {
Some(b) => generalized_eig(a, b)?,
_ => a.eigh_into()?,
};
// sort and ensure that signs are deterministic
let (vals, vecs) = res.sort_eig(order);
let s = vecs.row(0).mapv(|x| x.signum());
let vecs = vecs * s;
Ok((vals.slice_move(s![..size]), vecs.slice_move(s![.., ..size])))
}
/// Masks a matrix with the given `matrix`
fn ndarray_mask<A: NdFloat>(matrix: ArrayView2<A>, mask: &[bool]) -> Array2<A> {
assert_eq!(mask.len(), matrix.ncols());
let indices = mask
.iter()
.enumerate()
.filter(|(_, b)| **b)
.map(|(a, _)| a)
.collect::<Vec<usize>>();
matrix.select(Axis(1), &indices)
}
/// Applies constraints ensuring that a matrix is orthogonal to it
///
/// This functions takes a matrix `v` and constraint-matrix `y` and orthogonalize `v` to `y`.
fn apply_constraints<A: NdFloat>(
mut v: ArrayViewMut<A, Ix2>,
cholesky_yy: &Array2<A>,
y: ArrayView2<A>,
) {
let gram_yv = y.t().dot(&v);
let u = cholesky_yy
.solve_triangular_into(gram_yv, UPLO::Lower)
.unwrap();
// performs `v = -1 y . u + 1 v`, therefore `v -= y.u`
ndarray::linalg::general_mat_mul(-A::one(), &y, &u, A::one(), &mut v);
}
/// Orthonormalize `V` with Cholesky factorization
///
/// This also returns the matrix `R` of the `QR` problem
fn orthonormalize<T: NdFloat>(v: Array2<T>) -> Result<(Array2<T>, Array2<T>)> {
let gram_vv = v.t().dot(&v);
let gram_vv_fac = gram_vv.cholesky_into()?;
//assert_abs_diff_eq!(
// &gram_vv,
// &gram_vv_fac.dot(&gram_vv_fac.t()),
// epsilon=NumCast::from(1e-5).unwrap(),
//);
let v_t = v.reversed_axes();
let u = gram_vv_fac
.solve_triangular_into(v_t, UPLO::Lower)?
.reversed_axes();
Ok((u, gram_vv_fac))
}
/// Eigenvalue solver for large symmetric positive definite (SPD) eigenproblems
///
/// # Arguments
/// * `a` - An operator defining the problem, usually a sparse (sometimes also dense) matrix
/// multiplication. Also called the "stiffness matrix".
/// * `x` - Initial approximation of the k eigenvectors. If `a` has shape=(n,n), then `x` should
/// have shape=(n,k).
/// * `m` - Preconditioner to `a`, by default the identity matrix. Should approximate the inverse
/// of `a`.
/// * `y` - Constraints of (n,size_y), iterations are performed in the orthogonal complement of the
/// column-space of `y`. It must be full rank.
/// * `tol` - The tolerance values defines at which point the solver stops the optimization. The approximation
/// of a eigenvalue stops when then l2-norm of the residual is below this threshold.
/// * `maxiter` - The maximal number of iterations
/// * `order` - Whether to solve for the largest or lowest eigenvalues
///
/// The function returns an `LobpcgResult` with the eigenvalue/eigenvector and achieved residual norm
/// for it. All iterations are tracked and the optimal solution returned. In case of an error a
/// special variant `LobpcgResult::NotConverged` additionally carries the error. This can happen when
/// the precision of the matrix is too low (switch then from `f32` to `f64` for example).
pub fn lobpcg<A: NdFloat + Sum, F: Fn(ArrayView2<A>) -> Array2<A>, G: Fn(ArrayViewMut2<A>)>(
a: F,
mut x: Array2<A>,
m: G,
y: Option<ArrayView2<A>>,
tol: f32,
maxiter: usize,
order: Order,
) -> LobpcgResult<A> {
// the initital approximation should be maximal square
// n is the dimensionality of the problem
let (n, size_x) = (x.nrows(), x.ncols());
if size_x > n {
return Err((
LinalgError::NotThin {
rows: size_x,
cols: n,
},
None,
));
}
/*let size_y = match y {
Some(ref y) => y.ncols(),
_ => 0,
};
if (n - size_y) < 5 * size_x {
panic!("Please use a different approach, the LOBPCG method only supports the calculation of a couple of eigenvectors!");
}*/
// cap the number of iteration
let mut iter = usize::min(n * 10, maxiter);
let tol = NumCast::from(tol).unwrap();
// calculate cholesky factorization of YY' and apply constraints to initial guess
let cholesky_yy = y.as_ref().map(|y| {
let cholesky_yy = y.t().dot(y).cholesky_into().unwrap();
apply_constraints(x.view_mut(), &cholesky_yy, y.view());
cholesky_yy
});
// orthonormalize the initial guess
let (x, _) = orthonormalize(x).map_err(|err| (err, None))?;
// calculate AX and XAX for Rayleigh quotient
let ax = a(x.view());
let xax = x.t().dot(&ax);
// perform eigenvalue decomposition of XAX
let (mut lambda, eig_block) =
sorted_eig(xax, None, size_x, order).map_err(|err| (err, None))?;
// initiate approximation of the eigenvector
let mut x = x.dot(&eig_block);
let mut ax = ax.dot(&eig_block);
// track residual below threshold
let mut activemask = vec![true; size_x];
// track residuals and best result
let mut residual_norms_history = Vec::new();
let mut best_result = None;
let mut previous_block_size = size_x;
let mut ident: Array2<A> = Array2::eye(size_x);
let ident0: Array2<A> = Array2::eye(size_x);
//let two: A = NumCast::from(2.0).unwrap();
let two = A::from(2.0).unwrap();
let mut previous_p_ap: Option<(Array2<A>, Array2<A>)> = None;
let mut explicit_gram_flag = true;
let final_norm = loop {
// calculate residual
let lambda_diag = Array2::from_diag(&lambda);
let lambda_x = x.dot(&lambda_diag);
// calculate residual AX - lambdaX
let r = &ax - &lambda_x;
// calculate L2 norm of error for every eigenvalue
let residual_norms = r
.columns()
.into_iter()
.map(|x| x.norm_l2())
.collect::<Vec<A>>();
residual_norms_history.push(residual_norms.clone());
// compare best result and update if we improved
let sum_rnorm = residual_norms.iter().cloned().sum();
if best_result
.as_ref()
.map(|x: &(_, _, Vec<A>)| x.2.iter().cloned().sum::<A>() > sum_rnorm)
.unwrap_or(true)
{
best_result = Some((lambda.clone(), x.clone(), residual_norms.clone()));
}
// disable eigenvalues which are below the tolerance threshold
activemask = residual_norms
.iter()
.zip(activemask.iter())
.map(|(x, a)| *x > tol && *a)
.collect();
// resize identity block if necessary
let current_block_size = activemask.iter().filter(|x| **x).count();
if current_block_size != previous_block_size {
previous_block_size = current_block_size;
ident = Array2::eye(current_block_size);
}
// if we are below the threshold for all eigenvalue or exceeded the number of iteration,
// abort
if current_block_size == 0 || iter == 0 {
break Ok(residual_norms);
}
// select active eigenvalues, apply pre-conditioner, orthogonalize to Y and orthonormalize
let mut active_block_r = ndarray_mask(r.view(), &activemask);
// apply preconditioner
m(active_block_r.view_mut());
// apply constraints to the preconditioned residuals
if let (Some(ref y), Some(ref cholesky_yy)) = (&y, &cholesky_yy) {
apply_constraints(active_block_r.view_mut(), cholesky_yy, y.view());
}
// orthogonalize the preconditioned residual to x
// performs `v = -1 y . u + 1 v`, therefore `v -= y.u`
ndarray::linalg::general_mat_mul(
-A::one(),
&x,
&x.t().dot(&active_block_r),
A::one(),
&mut active_block_r,
);
let (r, _) = match orthonormalize(active_block_r) {
Ok(x) => x,
Err(err) => break Err(err),
};
let ar = a(r.view());
// check whether `A` is of type `f32` or `f64`
let max_rnorm_float = if A::epsilon() > NumCast::from(1e-8).unwrap() {
NumCast::from(1.0).unwrap()
} else {
NumCast::from(1.0e-8).unwrap()
};
// if we are once below the max_rnorm, enable explicit gram flag
let max_norm = residual_norms.into_iter().fold(A::neg_infinity(), A::max);
explicit_gram_flag = max_norm <= max_rnorm_float || explicit_gram_flag;
// perform the Rayleigh Ritz procedure
let xar = x.t().dot(&ar);
let mut rar = r.t().dot(&ar);
// for small residuals calculate covariance matrices explicitely, otherwise approximate
// them such that X is orthogonal and uncorrelated to the residual R and use eigenvalues of
// previous decomposition
let (xax, xx, rr, xr) = if explicit_gram_flag {
rar = (&rar + &rar.t()) / two;
let xax = x.t().dot(&ax);
(
(&xax + &xax.t()) / two,
x.t().dot(&x),
r.t().dot(&r),
x.t().dot(&r),
)
} else {
(
lambda_diag,
ident0.clone(),
ident.clone(),
Array2::zeros((size_x, current_block_size)),
)
};
// mask and orthonormalize P and AP
let mut p_ap = previous_p_ap
.as_ref()
.and_then(|(p, ap)| {
let active_p = ndarray_mask(p.view(), &activemask);
let active_ap = ndarray_mask(ap.view(), &activemask);
orthonormalize(active_p).map(|x| (active_ap, x)).ok()
})
.and_then(|(active_ap, (active_p, p_r))| {
// orthonormalize AP with R^{-1} of A
let active_ap = active_ap.reversed_axes();
p_r.solve_triangular_into(active_ap, UPLO::Lower)
.map(|active_ap| (active_p, active_ap.reversed_axes()))
.ok()
});
// compute symmetric gram matrices and calculate solution of eigenproblem
//
// first try to compute the eigenvalue decomposition of the span{R, X, P},
// if this fails (or the algorithm was restarted), then just use span{R, X}
let result = p_ap
.as_ref()
.ok_or(LinalgError::NonInvertible)
.and_then(|(active_p, active_ap)| {
let xap = x.t().dot(active_ap);
let rap = r.t().dot(active_ap);
let pap = active_p.t().dot(active_ap);
let xp = x.t().dot(active_p);
let rp = r.t().dot(active_p);
let (pap, pp) = if explicit_gram_flag {
((&pap + &pap.t()) / two, active_p.t().dot(active_p))
} else {
(pap, ident.clone())
};
sorted_eig(
concatenate![
Axis(0),
concatenate![Axis(1), xax, xar, xap],
concatenate![Axis(1), xar.t(), rar, rap],
concatenate![Axis(1), xap.t(), rap.t(), pap]
],
Some(concatenate![
Axis(0),
concatenate![Axis(1), xx, xr, xp],
concatenate![Axis(1), xr.t(), rr, rp],
concatenate![Axis(1), xp.t(), rp.t(), pp]
]),
size_x,
order,
)
})
.or_else(|_| {
p_ap = None;
sorted_eig(
concatenate![
Axis(0),
concatenate![Axis(1), xax, xar],
concatenate![Axis(1), xar.t(), rar]
],
Some(concatenate![
Axis(0),
concatenate![Axis(1), xx, xr],
concatenate![Axis(1), xr.t(), rr]
]),
size_x,
order,
)
});
// update eigenvalues and eigenvectors (lambda is also used in the next iteration)
let eig_vecs;
match result {
Ok((x, y)) => {
lambda = x;
eig_vecs = y;
}
Err(x) => break Err(x),
}
// approximate eigenvector X and conjugate vectors P with solution of eigenproblem
let (p, ap, tau) = if let Some((active_p, active_ap)) = p_ap {
// tau are eigenvalues to basis of X
let tau = eig_vecs.slice(s![..size_x, ..]);
// alpha are eigenvalues to basis of R
let alpha = eig_vecs.slice(s![size_x..size_x + current_block_size, ..]);
// gamma are eigenvalues to basis of P
let gamma = eig_vecs.slice(s![size_x + current_block_size.., ..]);
// update AP and P in span{R, P} as linear combination
let updated_p = r.dot(&alpha) + active_p.dot(&gamma);
let updated_ap = ar.dot(&alpha) + active_ap.dot(&gamma);
(updated_p, updated_ap, tau)
} else {
// tau are eigenvalues to basis of X
let tau = eig_vecs.slice(s![..size_x, ..]);
// alpha are eigenvalues to basis of R
let alpha = eig_vecs.slice(s![size_x.., ..]);
// update AP and P as linear combination of the residual matrix R
let updated_p = r.dot(&alpha);
let updated_ap = ar.dot(&alpha);
(updated_p, updated_ap, tau)
};
// update approximation of X as linear combinations of span{X, P, R}
x = x.dot(&tau) + &p;
ax = ax.dot(&tau) + ≈
previous_p_ap = Some((p, ap));
iter -= 1;
};
// retrieve best result and convert norm into `A`
let (vals, vecs, rnorm) = best_result.unwrap();
let res = Lobpcg {
eigvals: vals,
eigvecs: vecs,
rnorm,
};
match final_norm {
Ok(_) => Ok(res),
Err(err) => Err((err, Some(res))),
}
}
#[cfg(test)]
mod tests {
use super::ndarray_mask;
use super::orthonormalize;
use super::sorted_eig;
use super::Order;
use super::{lobpcg, Lobpcg};
use crate::qr::*;
use approx::assert_abs_diff_eq;
use ndarray::prelude::*;
use rand::distributions::{Distribution, Standard};
use rand::SeedableRng;
use rand_xoshiro::Xoshiro256Plus;
/// Generate random array
fn random<A>(sh: (usize, usize)) -> Array2<A>
where
A: NdFloat,
Standard: Distribution<A>,
{
let rng = Xoshiro256Plus::seed_from_u64(3);
crate::lobpcg::random(sh, rng)
}
/// Test the `sorted_eigen` function
#[test]
fn test_sorted_eigen() {
let matrix: Array2<f64> = random((10, 10)) * 10.0;
let matrix = matrix.t().dot(&matrix);
// return all eigenvectors with largest first
let (vals, vecs) = sorted_eig(matrix.clone(), None, 10, Order::Largest).unwrap();
// calculate V * A * V' and compare to original matrix
let diag = Array2::from_diag(&vals);
let rec = (vecs.dot(&diag)).dot(&vecs.t());
assert_abs_diff_eq!(&matrix, &rec, epsilon = 1e-5);
}
/// Test the masking function
#[test]
fn test_masking() {
let matrix: Array2<f64> = random((10, 5)) * 10.0;
let masked_matrix = ndarray_mask(matrix.view(), &[true, true, false, true, false]);
assert_abs_diff_eq!(
&masked_matrix.slice(s![.., 2]),
&matrix.slice(s![.., 3]),
epsilon = 1e-12,
);
}
/// Test orthonormalization of a random matrix
#[test]
fn test_orthonormalize() {
let matrix: Array2<f64> = random((10, 10)) * 10.0;
let (n, l) = orthonormalize(matrix.clone()).unwrap();
// check for orthogonality
let identity = n.dot(&n.t());
assert_abs_diff_eq!(&identity, &Array2::eye(10), epsilon = 1e-2);
// compare returned factorization with QR decomposition
let qr = matrix.qr().unwrap();
assert_abs_diff_eq!(
&qr.into_r().mapv(|x| x.abs()),
&l.t().mapv(|x| x.abs()),
epsilon = 1e-2
);
}
#[test]
fn test_generalized_eigenvalue() {
let matrix: Array2<f64> = random((10, 10)) * 1.;
let matrix = matrix.t().dot(&matrix);
let identity = Array2::eye(10);
let matrix_inv = matrix.qr().unwrap().inverse().unwrap();
// check that for the same matrix all eigenvalues are one
let (vals, _) =
sorted_eig(matrix.clone(), Some(matrix.clone()), 10, Order::Largest).unwrap();
assert_abs_diff_eq!(vals, Array1::from_elem(10, 1.0), epsilon = 1e-4);
let (vals1, _) = sorted_eig(matrix, Some(identity.clone()), 10, Order::Largest).unwrap();
let (vals2, _) = sorted_eig(identity, Some(matrix_inv), 10, Order::Largest).unwrap();
assert_abs_diff_eq!(vals1, vals2, epsilon = 1e-5);
//assert_abs_diff_eq!(vecs1, vecs2, epsilon=1e-5);
}
fn assert_symmetric(a: &Array2<f64>) {
assert_abs_diff_eq!(a.view(), &a.t(), epsilon = 1e-5);
}
fn check_eigenvalues(a: &Array2<f64>, order: Order, num: usize, ground_truth_eigvals: &[f64]) {
assert_symmetric(a);
let n = a.len_of(Axis(0));
let x: Array2<f64> = random((n, num));
let result = lobpcg(|y| a.dot(&y), x, |_| {}, None, 1e-6, n * 3, order);
match result {
Ok(Lobpcg { eigvals, rnorm, .. }) | Err((_, Some(Lobpcg { eigvals, rnorm, .. }))) => {
// check convergence
for (i, norm) in rnorm.into_iter().enumerate() {
if norm > 1e-5 {
println!("==== Assertion Failed ====");
println!("The {}th eigenvalue estimation did not converge!", i);
panic!("Too large deviation of residual norm: {} > 0.01", norm);
}
}
// check correct order of eigenvalues
if ground_truth_eigvals.len() == num {
assert_abs_diff_eq!(
&Array1::from(ground_truth_eigvals.to_vec()),
&eigvals,
epsilon = num as f64 * 5e-5,
)
}
}
Err((err, None)) => panic!("Did not converge: {:?}", err),
}
}
/// Test the eigensolver with a identity matrix problem and a random initial solution
#[test]
fn test_eigsolver_diag() {
let diag = arr1(&[
1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
20.,
]);
let a = Array2::from_diag(&diag);
check_eigenvalues(&a, Order::Largest, 3, &[20., 19., 18.]);
check_eigenvalues(&a, Order::Smallest, 3, &[1., 2., 3.]);
}
/// Test the eigensolver with matrix of constructed eigenvalues
#[test]
fn test_eigsolver_constructed() {
let n = 50;
let tmp = random((n, n));
//let (v, _) = tmp.qr_square().unwrap();
let (v, _) = orthonormalize(tmp).unwrap();
// set eigenvalues in decreasing order
let t = Array2::from_diag(&Array1::linspace(n as f64, -(n as f64) + 2., n));
let a = v.dot(&t.dot(&v.t()));
// find five largest eigenvalues
check_eigenvalues(&a, Order::Largest, 5, &[50.0, 48.0, 46.0, 44.0, 42.0]);
check_eigenvalues(&a, Order::Smallest, 5, &[-48.0, -46.0, -44.0, -42.0, -40.0]);
}
#[test]
fn test_eigsolver_constrained() {
let diag = arr1(&[1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]);
let a = Array2::from_diag(&diag);
let x: Array2<f64> = random((10, 1));
let y: Array2<f64> = arr2(&[
[1.0, 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 1.0, 0., 0., 0., 0., 0., 0., 0., 0.],
])
.reversed_axes();
let result = lobpcg(
|y| a.dot(&y),
x,
|_| {},
Some(y.view()),
1e-10,
50,
Order::Smallest,
);
match result {
Ok(Lobpcg {
eigvals,
eigvecs,
rnorm,
})
| Err((
_,
Some(Lobpcg {
eigvals,
eigvecs,
rnorm,
}),
)) => {
// check convergence
for (i, norm) in rnorm.into_iter().enumerate() {
if norm > 0.01 {
println!("==== Assertion Failed ====");
println!("The {}th eigenvalue estimation did not converge!", i);
panic!("Too large deviation of residual norm: {} > 0.01", norm);
}
}
// should be the third eigenvalue
assert_abs_diff_eq!(&eigvals, &Array1::from(vec![3.0]), epsilon = 1e-6);
assert_abs_diff_eq!(
&eigvecs.column(0).mapv(|x| x.abs()),
&arr1(&[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]),
epsilon = 1e-5,
);
}
Err((err, None)) => panic!("Did not converge: {:?}", err),
}
}
}