1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
//! Truncated eigenvalue decomposition
//!
use super::random;
use crate::{
    lobpcg::{lobpcg, Lobpcg, LobpcgResult},
    Order, Result,
};

use ndarray::prelude::*;
use ndarray::{stack, NdFloat};
use num_traits::NumCast;
use rand::Rng;
use std::iter::Sum;

#[derive(Debug, Clone)]
/// Truncated eigenproblem solver
///
/// This struct wraps the LOBPCG algorithm and provides convenient builder-pattern access to
/// parameter like maximal iteration, precision and constraint matrix. Furthermore it allows
/// conversion into a iterative solver where each iteration step yields a new eigenvalue/vector
/// pair.
///
/// # Example
///
/// ```rust
/// use ndarray::{arr1, Array2};
/// use linfa_linalg::{Order, lobpcg::TruncatedEig};
/// use rand::SeedableRng;
/// use rand_xoshiro::Xoshiro256Plus;
///
/// let diag = arr1(&[1., 2., 3., 4., 5.]);
/// let a = Array2::from_diag(&diag);
///
/// let mut eig = TruncatedEig::new_with_rng(a, Order::Largest, Xoshiro256Plus::seed_from_u64(42))
///    .precision(1e-5)
///    .maxiter(500);
///
/// let res = eig.decompose(3);
/// ```
pub struct TruncatedEig<A: NdFloat, R: Rng> {
    order: Order,
    problem: Array2<A>,
    pub constraints: Option<Array2<A>>,
    preconditioner: Option<Array2<A>>,
    precision: f32,
    maxiter: usize,
    rng: R,
}

impl<A: NdFloat + Sum, R: Rng> TruncatedEig<A, R> {
    /// Create a new truncated eigenproblem solver
    ///
    /// # Properties
    /// * `problem`: problem matrix
    /// * `order`: ordering of the eigenvalues with [Order](crate::Order)
    /// * `rng`: random number generator
    pub fn new_with_rng(problem: Array2<A>, order: Order, rng: R) -> TruncatedEig<A, R> {
        TruncatedEig {
            precision: 1e-5,
            maxiter: problem.len_of(Axis(0)) * 2,
            preconditioner: None,
            constraints: None,
            order,
            problem,
            rng,
        }
    }
}

impl<A: NdFloat + Sum, R: Rng> TruncatedEig<A, R> {
    /// Set desired precision
    ///
    /// This argument specifies the desired precision, which is passed to the LOBPCG solver. It
    /// controls at which point the opimization of each eigenvalue is stopped. The precision is
    /// global and applied to all eigenvalues with respect to their L2 norm.
    ///
    /// If the precision can't be reached and the maximum number of iteration is reached, then an
    /// error is returned in [LobpcgResult](crate::lobpcg::LobpcgResult).
    pub fn precision(mut self, precision: f32) -> Self {
        self.precision = precision;

        self
    }

    /// Set the maximal number of iterations
    ///
    /// The LOBPCG is an iterative approach to eigenproblems and stops when this maximum
    /// number of iterations are reached.
    pub fn maxiter(mut self, maxiter: usize) -> Self {
        self.maxiter = maxiter;

        self
    }

    /// Construct a solution, which is orthogonal to this
    ///
    /// If a number of eigenvectors are already known, then this function can be used to construct
    /// a orthogonal subspace. Also used with an iterative approach.
    pub fn orthogonal_to(mut self, constraints: Array2<A>) -> Self {
        self.constraints = Some(constraints);

        self
    }

    /// Apply a preconditioner
    ///
    /// A preconditioning matrix can speed up the solving process by improving the spectral
    /// distribution of the eigenvalues. It requires prior knowledge of the problem.
    pub fn precondition_with(mut self, preconditioner: Array2<A>) -> Self {
        self.preconditioner = Some(preconditioner);

        self
    }

    /// Calculate the eigenvalue decomposition
    ///
    /// # Parameters
    ///
    ///  * `num`: number of eigenvalues ordered by magnitude
    ///
    /// # Example
    ///
    /// ```rust
    /// use ndarray::{arr1, Array2};
    /// use linfa_linalg::{Order, lobpcg::TruncatedEig};
    /// use rand::SeedableRng;
    /// use rand_xoshiro::Xoshiro256Plus;
    ///
    /// let diag = arr1(&[1., 2., 3., 4., 5.]);
    /// let a = Array2::from_diag(&diag);
    ///
    /// let mut eig = TruncatedEig::new_with_rng(a, Order::Largest, Xoshiro256Plus::seed_from_u64(42))
    ///    .precision(1e-5)
    ///    .maxiter(500);
    ///
    /// let res = eig.decompose(3);
    /// ```
    pub fn decompose(&mut self, num: usize) -> LobpcgResult<A> {
        if num == 0 {
            // return empty solution if requested eigenvalue number is zero
            return Ok(Lobpcg {
                eigvals: Array1::zeros(0),
                eigvecs: Array2::zeros((0, 0)),
                rnorm: Vec::new(),
            });
        }

        let x: Array2<f64> = random((self.problem.len_of(Axis(0)), num), &mut self.rng);
        let x = x.mapv(|x| NumCast::from(x).unwrap());

        if let Some(ref preconditioner) = self.preconditioner {
            lobpcg(
                |y| self.problem.dot(&y),
                x,
                |mut y| y.assign(&preconditioner.dot(&y)),
                self.constraints.as_ref().map(|x| x.view()),
                self.precision,
                self.maxiter,
                self.order,
            )
        } else {
            lobpcg(
                |y| self.problem.dot(&y),
                x,
                |_| {},
                self.constraints.as_ref().map(|x| x.view()),
                self.precision,
                self.maxiter,
                self.order,
            )
        }
    }
}

impl<A: NdFloat + Sum, R: Rng> IntoIterator for TruncatedEig<A, R> {
    type Item = (Array1<A>, Array2<A>);
    type IntoIter = TruncatedEigIterator<A, R>;

    fn into_iter(self) -> TruncatedEigIterator<A, R> {
        TruncatedEigIterator {
            step_size: 1,
            remaining: self.problem.len_of(Axis(0)),
            eig: self,
        }
    }
}

impl<A: NdFloat + Sum, R: Rng> TruncatedEig<A, R> {
    pub fn into_iter_step_size(self, step_size: usize) -> Result<TruncatedEigIterator<A, R>> {
        TruncatedEigIterator::new(self, step_size)
    }
}

/// Truncated eigenproblem iterator
///
/// This wraps a truncated eigenproblem and provides an iterator where each step yields a new
/// eigenvalue/vector pair. Useful for generating pairs until a certain condition is met.
///
/// # Example
///
/// ```rust
/// use ndarray::{arr1, Array2};
/// use linfa_linalg::{Order, lobpcg::TruncatedEig};
/// use rand::SeedableRng;
/// use rand_xoshiro::Xoshiro256Plus;
///
/// let diag = arr1(&[1., 2., 3., 4., 5.]);
/// let a = Array2::from_diag(&diag);
///
/// let teig = TruncatedEig::new_with_rng(a, Order::Largest, Xoshiro256Plus::seed_from_u64(42))
///     .precision(1e-5)
///     .maxiter(500);
///
/// // solve eigenproblem until eigenvalues get smaller than 0.5
/// let res = teig.into_iter()
///     .take_while(|x| x.0[0] > 0.5)
///     .flat_map(|x| x.0.to_vec())
///     .collect::<Vec<_>>();
/// ```
pub struct TruncatedEigIterator<A: NdFloat, R: Rng> {
    step_size: usize,
    remaining: usize,
    eig: TruncatedEig<A, R>,
}

impl<A: NdFloat + Sum, R: Rng> TruncatedEigIterator<A, R> {
    pub fn new(obj: TruncatedEig<A, R>, step_size: usize) -> Result<TruncatedEigIterator<A, R>> {
        if step_size < 1 {
            panic!("Step size should be larger than zero");
        }

        Ok(TruncatedEigIterator {
            remaining: obj.problem.len_of(Axis(0)),
            eig: obj,
            step_size,
        })
    }
}

impl<A: NdFloat + Sum, R: Rng> Iterator for TruncatedEigIterator<A, R> {
    type Item = (Array1<A>, Array2<A>);

    fn next(&mut self) -> Option<Self::Item> {
        if self.remaining == 0 {
            return None;
        }

        let step_size = usize::min(self.step_size, self.remaining);
        let res = self.eig.decompose(step_size);

        match res {
            Ok(Lobpcg {
                eigvals,
                eigvecs,
                rnorm,
            })
            | Err((
                _,
                Some(Lobpcg {
                    eigvals,
                    eigvecs,
                    rnorm,
                }),
            )) => {
                // abort if any eigenproblem did not converge
                for r_norm in rnorm {
                    if r_norm > NumCast::from(0.1).unwrap() {
                        return None;
                    }
                }

                // add the new eigenvector to the internal constrain matrix
                let new_constraints = if let Some(ref constraints) = self.eig.constraints {
                    let eigvecs_arr: Vec<_> = constraints
                        .columns()
                        .into_iter()
                        .chain(eigvecs.columns())
                        .collect();

                    stack(Axis(1), &eigvecs_arr).unwrap()
                } else {
                    eigvecs.clone()
                };

                self.eig.constraints = Some(new_constraints);
                self.remaining -= step_size;

                Some((eigvals, eigvecs))
            }
            Err((_, _)) => None,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::Order;
    use super::TruncatedEig;
    use ndarray::{arr1, Array2};
    use rand::SeedableRng;
    use rand_xoshiro::Xoshiro256Plus;

    #[test]
    fn test_truncated_eig() {
        let diag = arr1(&[
            1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
            20.,
        ]);
        let a = Array2::from_diag(&diag);

        let teig = TruncatedEig::new_with_rng(a, Order::Largest, Xoshiro256Plus::seed_from_u64(42))
            .precision(1e-5)
            .maxiter(500);

        let res = teig.into_iter().take(3).flat_map(|x| x.0.to_vec());
        let ground_truth = vec![20., 19., 18.];

        assert!(
            ground_truth
                .into_iter()
                .zip(res)
                .map(|(x, y)| (x - y) * (x - y))
                .sum::<f64>()
                < 0.01
        );
    }
}