1use ndarray::{prelude::*, Data};
4
5pub trait Norm {
7 type Output;
8
9 fn norm_l1(&self) -> Self::Output;
11 fn norm_l2(&self) -> Self::Output;
13 fn norm_max(&self) -> Self::Output;
15}
16
17impl<A, S, D> Norm for ArrayBase<S, D>
18where
19 A: NdFloat + std::iter::Sum,
20 S: Data<Elem = A>,
21 D: Dimension,
22{
23 type Output = A;
24
25 fn norm_l1(&self) -> Self::Output {
26 self.iter().map(|x| x.abs()).sum()
27 }
28
29 fn norm_l2(&self) -> Self::Output {
30 self.iter().map(|&x| x * x).sum::<A>().sqrt()
31 }
32
33 fn norm_max(&self) -> Self::Output {
34 self.iter().fold(A::zero(), |f, &val| val.abs().max(f))
35 }
36}
37
38#[cfg(test)]
39mod tests {
40 use approx::assert_abs_diff_eq;
41
42 use super::*;
43
44 #[test]
45 fn norms() {
46 let a = array![[1.0f64, -3.], [2., -8.]];
47 assert_abs_diff_eq!(a.norm_l1(), 14.);
48 assert_abs_diff_eq!(a.norm_l2(), 78.0f64.sqrt());
49 assert_abs_diff_eq!(a.norm_max(), 8.);
50 }
51}