llama_cpp_2/model/
params.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
//! A safe wrapper around `llama_model_params`.

use crate::model::params::kv_overrides::KvOverrides;
use std::ffi::{c_char, CStr};
use std::fmt::{Debug, Formatter};
use std::pin::Pin;
use std::ptr::null;

pub mod kv_overrides;

/// A safe wrapper around `llama_model_params`.
#[allow(clippy::module_name_repetitions)]
pub struct LlamaModelParams {
    pub(crate) params: llama_cpp_sys_2::llama_model_params,
    kv_overrides: Vec<llama_cpp_sys_2::llama_model_kv_override>,
}

impl Debug for LlamaModelParams {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("LlamaModelParams")
            .field("n_gpu_layers", &self.params.n_gpu_layers)
            .field("main_gpu", &self.params.main_gpu)
            .field("vocab_only", &self.params.vocab_only)
            .field("use_mmap", &self.params.use_mmap)
            .field("use_mlock", &self.params.use_mlock)
            .field("kv_overrides", &"vec of kv_overrides")
            .finish()
    }
}

impl LlamaModelParams {
    /// See [`KvOverrides`]
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use llama_cpp_2::model::params::LlamaModelParams;
    /// let params = Box::pin(LlamaModelParams::default());
    /// let kv_overrides = params.kv_overrides();
    /// let count = kv_overrides.into_iter().count();
    /// assert_eq!(count, 0);
    /// ```
    #[must_use]
    pub fn kv_overrides(&self) -> KvOverrides {
        KvOverrides::new(self)
    }

    /// Appends a key-value override to the model parameters. It must be pinned as this creates a self-referential struct.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use std::ffi::{CStr, CString};
    /// use std::pin::pin;
    /// # use llama_cpp_2::model::params::LlamaModelParams;
    /// # use llama_cpp_2::model::params::kv_overrides::ParamOverrideValue;
    /// let mut params = pin!(LlamaModelParams::default());
    /// let key = CString::new("key").expect("CString::new failed");
    /// params.as_mut().append_kv_override(&key, ParamOverrideValue::Int(50));
    ///
    /// let kv_overrides = params.kv_overrides().into_iter().collect::<Vec<_>>();
    /// assert_eq!(kv_overrides.len(), 1);
    ///
    /// let (k, v) = &kv_overrides[0];
    /// assert_eq!(v, &ParamOverrideValue::Int(50));
    ///
    /// assert_eq!(k.to_bytes(), b"key", "expected key to be 'key', was {:?}", k);
    /// ```
    #[allow(clippy::missing_panics_doc)] // panics are just to enforce internal invariants, not user errors
    pub fn append_kv_override(
        mut self: Pin<&mut Self>,
        key: &CStr,
        value: kv_overrides::ParamOverrideValue,
    ) {
        let kv_override = self
            .kv_overrides
            .get_mut(0)
            .expect("kv_overrides did not have a next allocated");

        assert_eq!(kv_override.key[0], 0, "last kv_override was not empty");

        // There should be some way to do this without iterating over everything.
        for (i, &c) in key.to_bytes_with_nul().iter().enumerate() {
            kv_override.key[i] = c_char::try_from(c).expect("invalid character in key");
        }

        kv_override.tag = value.tag();
        kv_override.__bindgen_anon_1 = value.value();

        // set to null pointer for panic safety (as push may move the vector, invalidating the pointer)
        self.params.kv_overrides = null();

        // push the next one to ensure we maintain the iterator invariant of ending with a 0
        self.kv_overrides
            .push(llama_cpp_sys_2::llama_model_kv_override {
                key: [0; 128],
                tag: 0,
                __bindgen_anon_1: llama_cpp_sys_2::llama_model_kv_override__bindgen_ty_1 {
                    val_i64: 0,
                },
            });

        // set the pointer to the (potentially) new vector
        self.params.kv_overrides = self.kv_overrides.as_ptr();

        eprintln!("saved ptr: {:?}", self.params.kv_overrides);
    }
}

impl LlamaModelParams {
    /// Get the number of layers to offload to the GPU.
    #[must_use]
    pub fn n_gpu_layers(&self) -> i32 {
        self.params.n_gpu_layers
    }

    /// The GPU that is used for scratch and small tensors
    #[must_use]
    pub fn main_gpu(&self) -> i32 {
        self.params.main_gpu
    }

    /// only load the vocabulary, no weights
    #[must_use]
    pub fn vocab_only(&self) -> bool {
        self.params.vocab_only
    }

    /// use mmap if possible
    #[must_use]
    pub fn use_mmap(&self) -> bool {
        self.params.use_mmap
    }

    /// force system to keep model in RAM
    #[must_use]
    pub fn use_mlock(&self) -> bool {
        self.params.use_mlock
    }

    /// sets the number of gpu layers to offload to the GPU.
    /// ```
    /// # use llama_cpp_2::model::params::LlamaModelParams;
    /// let params = LlamaModelParams::default();
    /// let params = params.with_n_gpu_layers(1);
    /// assert_eq!(params.n_gpu_layers(), 1);
    /// ```
    #[must_use]
    pub fn with_n_gpu_layers(mut self, n_gpu_layers: u32) -> Self {
        // The only way this conversion can fail is if u32 overflows the i32 - in which case we set
        // to MAX
        let n_gpu_layers = i32::try_from(n_gpu_layers).unwrap_or(i32::MAX);
        self.params.n_gpu_layers = n_gpu_layers;
        self
    }

    /// sets the main GPU
    #[must_use]
    pub fn with_main_gpu(mut self, main_gpu: i32) -> Self {
        self.params.main_gpu = main_gpu;
        self
    }

    /// sets `vocab_only`
    #[must_use]
    pub fn with_vocab_only(mut self, vocab_only: bool) -> Self {
        self.params.vocab_only = vocab_only;
        self
    }

    /// sets `use_mlock`
    #[must_use]
    pub fn with_use_mlock(mut self, use_mlock: bool) -> Self {
        self.params.use_mlock = use_mlock;
        self
    }
}

/// Default parameters for `LlamaModel`. (as defined in llama.cpp by `llama_model_default_params`)
/// ```
/// # use llama_cpp_2::model::params::LlamaModelParams;
/// let params = LlamaModelParams::default();
/// #[cfg(not(target_os = "macos"))]
/// assert_eq!(params.n_gpu_layers(), 0, "n_gpu_layers should be 0");
/// #[cfg(target_os = "macos")]
/// assert_eq!(params.n_gpu_layers(), 999, "n_gpu_layers should be 999");
/// assert_eq!(params.main_gpu(), 0, "main_gpu should be 0");
/// assert_eq!(params.vocab_only(), false, "vocab_only should be false");
/// assert_eq!(params.use_mmap(), true, "use_mmap should be true");
/// assert_eq!(params.use_mlock(), false, "use_mlock should be false");
/// ```
impl Default for LlamaModelParams {
    fn default() -> Self {
        let default_params = unsafe { llama_cpp_sys_2::llama_model_default_params() };
        LlamaModelParams {
            params: default_params,
            // push the next one to ensure we maintain the iterator invariant of ending with a 0
            kv_overrides: vec![llama_cpp_sys_2::llama_model_kv_override {
                key: [0; 128],
                tag: 0,
                __bindgen_anon_1: llama_cpp_sys_2::llama_model_kv_override__bindgen_ty_1 {
                    val_i64: 0,
                },
            }],
        }
    }
}