llama_cpp_2/sampling.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
//! Safe wrapper around `llama_sampler`.
use std::borrow::Borrow;
use std::ffi::{c_char, CString};
use std::fmt::{Debug, Formatter};
use crate::context::LlamaContext;
use crate::model::LlamaModel;
use crate::token::data_array::LlamaTokenDataArray;
use crate::token::LlamaToken;
/// A safe wrapper around `llama_sampler`.
pub struct LlamaSampler {
pub(crate) sampler: *mut llama_cpp_sys_2::llama_sampler,
}
impl Debug for LlamaSampler {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("LlamaSamplerChain").finish()
}
}
impl LlamaSampler {
/// Sample and accept a token from the idx-th output of the last evaluation
#[must_use]
pub fn sample(&mut self, ctx: &LlamaContext, idx: i32) -> LlamaToken {
let token = unsafe {
llama_cpp_sys_2::llama_sampler_sample(self.sampler, ctx.context.as_ptr(), idx)
};
LlamaToken(token)
}
/// Applies this sampler to a [`LlamaTokenDataArray`].
pub fn apply(&self, data_array: &mut LlamaTokenDataArray) {
data_array.apply_sampler(self);
}
/// Accepts a token from the sampler, possibly updating the internal state of certain samplers
/// (e.g. grammar, repetition, etc.)
pub fn accept(&mut self, token: LlamaToken) {
unsafe { llama_cpp_sys_2::llama_sampler_accept(self.sampler, token.0) }
}
/// Accepts several tokens from the sampler or context, possibly updating the internal state of
/// certain samplers (e.g. grammar, repetition, etc.)
pub fn accept_many(&mut self, tokens: impl IntoIterator<Item = impl Borrow<LlamaToken>>) {
for token in tokens {
unsafe { llama_cpp_sys_2::llama_sampler_accept(self.sampler, token.borrow().0) }
}
}
/// Accepts several tokens from the sampler or context, possibly updating the internal state of
/// certain samplers (e.g. grammar, repetition, etc.)
#[must_use]
pub fn with_tokens(
mut self,
tokens: impl IntoIterator<Item = impl Borrow<LlamaToken>>,
) -> Self {
self.accept_many(tokens);
self
}
/// Combines a list of samplers into a single sampler that applies each component sampler one
/// after another.
///
/// If you are using a chain to select a token, the chain should always end with one of
/// [`LlamaSampler::greedy`], [`LlamaSampler::dist`], [`LlamaSampler::mirostat`], and
/// [`LlamaSampler::mirostat_v2`].
#[must_use]
pub fn chain(samplers: impl IntoIterator<Item = Self>, no_perf: bool) -> Self {
unsafe {
let chain = llama_cpp_sys_2::llama_sampler_chain_init(
llama_cpp_sys_2::llama_sampler_chain_params { no_perf },
);
for sampler in samplers {
llama_cpp_sys_2::llama_sampler_chain_add(chain, sampler.sampler);
// Do not call `llama_sampler_free` on the sampler, as the internal sampler is now
// owned by the chain
std::mem::forget(sampler);
}
Self { sampler: chain }
}
}
/// Same as [`Self::chain`] with `no_perf = false`.
///
/// # Example
/// ```rust
/// use llama_cpp_2::token::{
/// LlamaToken,
/// data::LlamaTokenData,
/// data_array::LlamaTokenDataArray
/// };
/// use llama_cpp_2::sampling::LlamaSampler;
///
/// let mut data_array = LlamaTokenDataArray::new(vec![
/// LlamaTokenData::new(LlamaToken(0), 0., 0.),
/// LlamaTokenData::new(LlamaToken(1), 1., 0.),
/// LlamaTokenData::new(LlamaToken(2), 2., 0.),
/// ], false);
///
/// data_array.apply_sampler(&mut LlamaSampler::chain_simple([
/// LlamaSampler::temp(0.5),
/// LlamaSampler::greedy(),
/// ]));
///
/// assert_eq!(data_array.data[0].logit(), 0.);
/// assert_eq!(data_array.data[1].logit(), 2.);
/// assert_eq!(data_array.data[2].logit(), 4.);
///
/// assert_eq!(data_array.data.len(), 3);
/// assert_eq!(data_array.selected_token(), Some(LlamaToken(2)));
/// ```
#[must_use]
pub fn chain_simple(samplers: impl IntoIterator<Item = Self>) -> Self {
Self::chain(samplers, false)
}
#[allow(clippy::doc_markdown)]
/// Updates the logits l_i' = l_i/t. When t <= 0.0f, the maximum logit is kept at it's original
/// value, the rest are set to -inf
///
/// # Example:
/// ```rust
/// use llama_cpp_2::token::{
/// LlamaToken,
/// data::LlamaTokenData,
/// data_array::LlamaTokenDataArray
/// };
/// use llama_cpp_2::sampling::LlamaSampler;
///
/// let mut data_array = LlamaTokenDataArray::new(vec![
/// LlamaTokenData::new(LlamaToken(0), 0., 0.),
/// LlamaTokenData::new(LlamaToken(1), 1., 0.),
/// LlamaTokenData::new(LlamaToken(2), 2., 0.),
/// ], false);
///
/// data_array.apply_sampler(&mut LlamaSampler::temp(0.5));
///
/// assert_eq!(data_array.data[0].logit(), 0.);
/// assert_eq!(data_array.data[1].logit(), 2.);
/// assert_eq!(data_array.data[2].logit(), 4.);
/// ```
#[must_use]
pub fn temp(t: f32) -> Self {
let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_temp(t) };
Self { sampler }
}
/// Dynamic temperature implementation (a.k.a. entropy) described in the paper
/// <https://arxiv.org/abs/2309.02772>.
#[must_use]
pub fn temp_ext(t: f32, delta: f32, exponent: f32) -> Self {
let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_temp_ext(t, delta, exponent) };
Self { sampler }
}
/// Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration"
/// <https://arxiv.org/abs/1904.09751>
///
/// # Example:
/// ```rust
/// use llama_cpp_2::token::{
/// LlamaToken,
/// data::LlamaTokenData,
/// data_array::LlamaTokenDataArray
/// };
/// use llama_cpp_2::sampling::LlamaSampler;
///
/// let mut data_array = LlamaTokenDataArray::new(vec![
/// LlamaTokenData::new(LlamaToken(0), 0., 0.),
/// LlamaTokenData::new(LlamaToken(1), 1., 0.),
/// LlamaTokenData::new(LlamaToken(2), 2., 0.),
/// LlamaTokenData::new(LlamaToken(3), 3., 0.),
/// ], false);
///
/// data_array.apply_sampler(&mut LlamaSampler::top_k(2));
///
/// assert_eq!(data_array.data.len(), 2);
/// assert_eq!(data_array.data[0].id(), LlamaToken(3));
/// assert_eq!(data_array.data[1].id(), LlamaToken(2));
/// ```
#[must_use]
pub fn top_k(k: i32) -> Self {
let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_top_k(k) };
Self { sampler }
}
/// Locally Typical Sampling implementation described in the paper <https://arxiv.org/abs/2202.00666>.
#[must_use]
pub fn typical(p: f32, min_keep: usize) -> Self {
let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_typical(p, min_keep) };
Self { sampler }
}
/// Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration"
/// <https://arxiv.org/abs/1904.09751>
#[must_use]
pub fn top_p(p: f32, min_keep: usize) -> Self {
let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_top_p(p, min_keep) };
Self { sampler }
}
/// Minimum P sampling as described in <https://github.com/ggerganov/llama.cpp/pull/3841>
#[must_use]
pub fn min_p(p: f32, min_keep: usize) -> Self {
let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_min_p(p, min_keep) };
Self { sampler }
}
/// XTC sampler as described in <https://github.com/oobabooga/text-generation-webui/pull/6335>
#[must_use]
pub fn xtc(p: f32, t: f32, min_keep: usize, seed: u32) -> Self {
let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_xtc(p, t, min_keep, seed) };
Self { sampler }
}
/// Grammar sampler
///
/// # Panics
/// If either of ``grammar_str`` or ``grammar_root`` contain null bytes.
#[must_use]
pub fn grammar(model: &LlamaModel, grammar_str: &str, grammar_root: &str) -> Self {
let grammar_str = CString::new(grammar_str).unwrap();
let grammar_root = CString::new(grammar_root).unwrap();
let sampler = unsafe {
llama_cpp_sys_2::llama_sampler_init_grammar(
model.vocab_ptr(),
grammar_str.as_ptr(),
grammar_root.as_ptr(),
)
};
Self { sampler }
}
/// DRY sampler, designed by p-e-w, as described in:
/// <https://github.com/oobabooga/text-generation-webui/pull/5677>, porting Koboldcpp
/// implementation authored by pi6am: <https://github.com/LostRuins/koboldcpp/pull/982>
///
/// # Panics
/// If any string in ``seq_breakers`` contains null bytes.
#[allow(missing_docs)]
#[must_use]
pub fn dry(
model: &LlamaModel,
multiplier: f32,
base: f32,
allowed_length: i32,
penalty_last_n: i32,
seq_breakers: impl IntoIterator<Item = impl AsRef<[u8]>>,
) -> Self {
let seq_breakers: Vec<CString> = seq_breakers
.into_iter()
.map(|s| CString::new(s.as_ref()).expect("A sequence breaker contains null bytes"))
.collect();
let mut seq_breaker_pointers: Vec<*const c_char> =
seq_breakers.iter().map(|s| s.as_ptr()).collect();
let sampler = unsafe {
llama_cpp_sys_2::llama_sampler_init_dry(
model.vocab_ptr(),
model
.n_ctx_train()
.try_into()
.expect("n_ctx_train exceeds i32::MAX"),
multiplier,
base,
allowed_length,
penalty_last_n,
seq_breaker_pointers.as_mut_ptr(),
seq_breaker_pointers.len(),
)
};
Self { sampler }
}
/// Penalizes tokens for being present in the context.
///
/// Parameters:
/// - ``penalty_last_n``: last n tokens to penalize (0 = disable penalty, -1 = context size)
/// - ``penalty_repeat``: 1.0 = disabled
/// - ``penalty_freq``: 0.0 = disabled
/// - ``penalty_present``: 0.0 = disabled
#[allow(clippy::too_many_arguments)]
#[must_use]
pub fn penalties(
penalty_last_n: i32,
penalty_repeat: f32,
penalty_freq: f32,
penalty_present: f32,
) -> Self {
let sampler = unsafe {
llama_cpp_sys_2::llama_sampler_init_penalties(
penalty_last_n,
penalty_repeat,
penalty_freq,
penalty_present,
)
};
Self { sampler }
}
/// Mirostat 1.0 algorithm described in the paper <https://arxiv.org/abs/2007.14966>. Uses tokens instead of words.
///
/// # Parameters:
/// - ``n_vocab``: [`LlamaModel::n_vocab`]
/// - ``seed``: Seed to initialize random generation with.
/// - ``tau``: The target cross-entropy (or surprise) value you want to achieve for the
/// generated text. A higher value corresponds to more surprising or less predictable text,
/// while a lower value corresponds to less surprising or more predictable text.
/// - ``eta``: The learning rate used to update `mu` based on the error between the target and
/// observed surprisal of the sampled word. A larger learning rate will cause `mu` to be
/// updated more quickly, while a smaller learning rate will result in slower updates.
/// - ``m``: The number of tokens considered in the estimation of `s_hat`. This is an arbitrary
/// value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`.
/// In the paper, they use `m = 100`, but you can experiment with different values to see how
/// it affects the performance of the algorithm.
#[must_use]
pub fn mirostat(n_vocab: i32, seed: u32, tau: f32, eta: f32, m: i32) -> Self {
let sampler =
unsafe { llama_cpp_sys_2::llama_sampler_init_mirostat(n_vocab, seed, tau, eta, m) };
Self { sampler }
}
/// Mirostat 2.0 algorithm described in the paper <https://arxiv.org/abs/2007.14966>. Uses tokens instead of words.
///
/// # Parameters:
/// - ``seed``: Seed to initialize random generation with.
/// - ``tau``: The target cross-entropy (or surprise) value you want to achieve for the
/// generated text. A higher value corresponds to more surprising or less predictable text,
/// while a lower value corresponds to less surprising or more predictable text.
/// - ``eta``: The learning rate used to update `mu` based on the error between the target and
/// observed surprisal of the sampled word. A larger learning rate will cause `mu` to be
/// updated more quickly, while a smaller learning rate will result in slower updates.
#[must_use]
pub fn mirostat_v2(seed: u32, tau: f32, eta: f32) -> Self {
let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_mirostat_v2(seed, tau, eta) };
Self { sampler }
}
/// Selects a token at random based on each token's probabilities
#[must_use]
pub fn dist(seed: u32) -> Self {
let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_dist(seed) };
Self { sampler }
}
/// Selects the most likely token
///
/// # Example:
/// ```rust
/// use llama_cpp_2::token::{
/// LlamaToken,
/// data::LlamaTokenData,
/// data_array::LlamaTokenDataArray
/// };
/// use llama_cpp_2::sampling::LlamaSampler;
///
/// let mut data_array = LlamaTokenDataArray::new(vec![
/// LlamaTokenData::new(LlamaToken(0), 0., 0.),
/// LlamaTokenData::new(LlamaToken(1), 1., 0.),
/// ], false);
///
/// data_array.apply_sampler(&mut LlamaSampler::greedy());
///
/// assert_eq!(data_array.data.len(), 2);
/// assert_eq!(data_array.selected_token(), Some(LlamaToken(1)));
/// ```
#[must_use]
pub fn greedy() -> Self {
let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_greedy() };
Self { sampler }
}
}
impl Drop for LlamaSampler {
fn drop(&mut self) {
unsafe {
llama_cpp_sys_2::llama_sampler_free(self.sampler);
}
}
}