llama_cpp_2/
sampling.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
//! Safe wrapper around `llama_sampler`.

use std::borrow::Borrow;
use std::ffi::{c_char, CString};
use std::fmt::{Debug, Formatter};

use crate::context::LlamaContext;
use crate::model::LlamaModel;
use crate::token::data_array::LlamaTokenDataArray;
use crate::token::LlamaToken;

/// A safe wrapper around `llama_sampler`.
pub struct LlamaSampler {
    pub(crate) sampler: *mut llama_cpp_sys_2::llama_sampler,
}

impl Debug for LlamaSampler {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("LlamaSamplerChain").finish()
    }
}

impl LlamaSampler {
    /// Sample and accept a token from the idx-th output of the last evaluation
    #[must_use]
    pub fn sample(&mut self, ctx: &LlamaContext, idx: i32) -> LlamaToken {
        let token = unsafe {
            llama_cpp_sys_2::llama_sampler_sample(self.sampler, ctx.context.as_ptr(), idx)
        };

        LlamaToken(token)
    }

    /// Applies this sampler to a [`LlamaTokenDataArray`].
    pub fn apply(&self, data_array: &mut LlamaTokenDataArray) {
        data_array.apply_sampler(self);
    }

    /// Accepts a token from the sampler, possibly updating the internal state of certain samplers
    /// (e.g. grammar, repetition, etc.)
    pub fn accept(&mut self, token: LlamaToken) {
        unsafe { llama_cpp_sys_2::llama_sampler_accept(self.sampler, token.0) }
    }

    /// Accepts several tokens from the sampler or context, possibly updating the internal state of
    /// certain samplers (e.g. grammar, repetition, etc.)
    pub fn accept_many(&mut self, tokens: impl IntoIterator<Item = impl Borrow<LlamaToken>>) {
        for token in tokens {
            unsafe { llama_cpp_sys_2::llama_sampler_accept(self.sampler, token.borrow().0) }
        }
    }

    /// Accepts several tokens from the sampler or context, possibly updating the internal state of
    /// certain samplers (e.g. grammar, repetition, etc.)
    #[must_use]
    pub fn with_tokens(
        mut self,
        tokens: impl IntoIterator<Item = impl Borrow<LlamaToken>>,
    ) -> Self {
        self.accept_many(tokens);
        self
    }

    /// Combines a list of samplers into a single sampler that applies each component sampler one
    /// after another.
    ///
    /// If you are using a chain to select a token, the chain should always end with one of
    /// [`LlamaSampler::greedy`], [`LlamaSampler::dist`], [`LlamaSampler::mirostat`], and
    /// [`LlamaSampler::mirostat_v2`].
    #[must_use]
    pub fn chain(samplers: impl IntoIterator<Item = Self>, no_perf: bool) -> Self {
        unsafe {
            let chain = llama_cpp_sys_2::llama_sampler_chain_init(
                llama_cpp_sys_2::llama_sampler_chain_params { no_perf },
            );

            for sampler in samplers {
                llama_cpp_sys_2::llama_sampler_chain_add(chain, sampler.sampler);

                // Do not call `llama_sampler_free` on the sampler, as the internal sampler is now
                // owned by the chain
                std::mem::forget(sampler);
            }

            Self { sampler: chain }
        }
    }

    /// Same as [`Self::chain`] with `no_perf = false`.
    ///
    /// # Example
    /// ```rust
    /// use llama_cpp_2::token::{
    ///    LlamaToken,
    ///    data::LlamaTokenData,
    ///    data_array::LlamaTokenDataArray
    /// };
    /// use llama_cpp_2::sampling::LlamaSampler;
    ///
    /// let mut data_array = LlamaTokenDataArray::new(vec![
    ///     LlamaTokenData::new(LlamaToken(0), 0., 0.),
    ///     LlamaTokenData::new(LlamaToken(1), 1., 0.),
    ///     LlamaTokenData::new(LlamaToken(2), 2., 0.),
    /// ], false);
    ///
    /// data_array.apply_sampler(&mut LlamaSampler::chain_simple([
    ///     LlamaSampler::temp(0.5),
    ///     LlamaSampler::greedy(),
    /// ]));
    ///
    /// assert_eq!(data_array.data[0].logit(), 0.);
    /// assert_eq!(data_array.data[1].logit(), 2.);
    /// assert_eq!(data_array.data[2].logit(), 4.);
    ///
    /// assert_eq!(data_array.data.len(), 3);
    /// assert_eq!(data_array.selected_token(), Some(LlamaToken(2)));
    /// ```
    #[must_use]
    pub fn chain_simple(samplers: impl IntoIterator<Item = Self>) -> Self {
        Self::chain(samplers, false)
    }

    #[allow(clippy::doc_markdown)]
    /// Updates the logits l_i' = l_i/t. When t <= 0.0f, the maximum logit is kept at it's original
    /// value, the rest are set to -inf
    ///
    /// # Example:
    /// ```rust
    /// use llama_cpp_2::token::{
    ///    LlamaToken,
    ///    data::LlamaTokenData,
    ///    data_array::LlamaTokenDataArray
    /// };
    /// use llama_cpp_2::sampling::LlamaSampler;
    ///
    /// let mut data_array = LlamaTokenDataArray::new(vec![
    ///     LlamaTokenData::new(LlamaToken(0), 0., 0.),
    ///     LlamaTokenData::new(LlamaToken(1), 1., 0.),
    ///     LlamaTokenData::new(LlamaToken(2), 2., 0.),
    /// ], false);
    ///
    /// data_array.apply_sampler(&mut LlamaSampler::temp(0.5));
    ///
    /// assert_eq!(data_array.data[0].logit(), 0.);
    /// assert_eq!(data_array.data[1].logit(), 2.);
    /// assert_eq!(data_array.data[2].logit(), 4.);
    /// ```
    #[must_use]
    pub fn temp(t: f32) -> Self {
        let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_temp(t) };
        Self { sampler }
    }

    /// Dynamic temperature implementation (a.k.a. entropy) described in the paper
    /// <https://arxiv.org/abs/2309.02772>.
    #[must_use]
    pub fn temp_ext(t: f32, delta: f32, exponent: f32) -> Self {
        let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_temp_ext(t, delta, exponent) };
        Self { sampler }
    }

    /// Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration"
    /// <https://arxiv.org/abs/1904.09751>
    ///
    /// # Example:
    /// ```rust
    /// use llama_cpp_2::token::{
    ///    LlamaToken,
    ///    data::LlamaTokenData,
    ///    data_array::LlamaTokenDataArray
    /// };
    /// use llama_cpp_2::sampling::LlamaSampler;
    ///
    /// let mut data_array = LlamaTokenDataArray::new(vec![
    ///     LlamaTokenData::new(LlamaToken(0), 0., 0.),
    ///     LlamaTokenData::new(LlamaToken(1), 1., 0.),
    ///     LlamaTokenData::new(LlamaToken(2), 2., 0.),
    ///     LlamaTokenData::new(LlamaToken(3), 3., 0.),
    /// ], false);
    ///
    /// data_array.apply_sampler(&mut LlamaSampler::top_k(2));
    ///
    /// assert_eq!(data_array.data.len(), 2);
    /// assert_eq!(data_array.data[0].id(), LlamaToken(3));
    /// assert_eq!(data_array.data[1].id(), LlamaToken(2));
    /// ```
    #[must_use]
    pub fn top_k(k: i32) -> Self {
        let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_top_k(k) };
        Self { sampler }
    }

    /// Locally Typical Sampling implementation described in the paper <https://arxiv.org/abs/2202.00666>.
    #[must_use]
    pub fn typical(p: f32, min_keep: usize) -> Self {
        let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_typical(p, min_keep) };
        Self { sampler }
    }

    /// Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration"
    /// <https://arxiv.org/abs/1904.09751>
    #[must_use]
    pub fn top_p(p: f32, min_keep: usize) -> Self {
        let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_top_p(p, min_keep) };
        Self { sampler }
    }

    /// Minimum P sampling as described in <https://github.com/ggerganov/llama.cpp/pull/3841>
    #[must_use]
    pub fn min_p(p: f32, min_keep: usize) -> Self {
        let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_min_p(p, min_keep) };
        Self { sampler }
    }

    /// XTC sampler as described in <https://github.com/oobabooga/text-generation-webui/pull/6335>
    #[must_use]
    pub fn xtc(p: f32, t: f32, min_keep: usize, seed: u32) -> Self {
        let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_xtc(p, t, min_keep, seed) };
        Self { sampler }
    }

    /// Grammar sampler
    ///
    /// # Panics
    /// If either of ``grammar_str`` or ``grammar_root`` contain null bytes.
    #[must_use]
    pub fn grammar(model: &LlamaModel, grammar_str: &str, grammar_root: &str) -> Self {
        let grammar_str = CString::new(grammar_str).unwrap();
        let grammar_root = CString::new(grammar_root).unwrap();

        let sampler = unsafe {
            llama_cpp_sys_2::llama_sampler_init_grammar(
                model.vocab_ptr(),
                grammar_str.as_ptr(),
                grammar_root.as_ptr(),
            )
        };
        Self { sampler }
    }

    /// DRY sampler, designed by p-e-w, as described in:
    /// <https://github.com/oobabooga/text-generation-webui/pull/5677>, porting Koboldcpp
    /// implementation authored by pi6am: <https://github.com/LostRuins/koboldcpp/pull/982>
    ///
    /// # Panics
    /// If any string in ``seq_breakers`` contains null bytes.
    #[allow(missing_docs)]
    #[must_use]
    pub fn dry(
        model: &LlamaModel,
        multiplier: f32,
        base: f32,
        allowed_length: i32,
        penalty_last_n: i32,
        seq_breakers: impl IntoIterator<Item = impl AsRef<[u8]>>,
    ) -> Self {
        let seq_breakers: Vec<CString> = seq_breakers
            .into_iter()
            .map(|s| CString::new(s.as_ref()).expect("A sequence breaker contains null bytes"))
            .collect();
        let mut seq_breaker_pointers: Vec<*const c_char> =
            seq_breakers.iter().map(|s| s.as_ptr()).collect();

        let sampler = unsafe {
            llama_cpp_sys_2::llama_sampler_init_dry(
                model.vocab_ptr(),
                model
                    .n_ctx_train()
                    .try_into()
                    .expect("n_ctx_train exceeds i32::MAX"),
                multiplier,
                base,
                allowed_length,
                penalty_last_n,
                seq_breaker_pointers.as_mut_ptr(),
                seq_breaker_pointers.len(),
            )
        };
        Self { sampler }
    }

    /// Penalizes tokens for being present in the context.
    ///
    /// Parameters:  
    /// - ``penalty_last_n``: last n tokens to penalize (0 = disable penalty, -1 = context size)
    /// - ``penalty_repeat``: 1.0 = disabled
    /// - ``penalty_freq``: 0.0 = disabled
    /// - ``penalty_present``: 0.0 = disabled
    #[allow(clippy::too_many_arguments)]
    #[must_use]
    pub fn penalties(
        penalty_last_n: i32,
        penalty_repeat: f32,
        penalty_freq: f32,
        penalty_present: f32,
    ) -> Self {
        let sampler = unsafe {
            llama_cpp_sys_2::llama_sampler_init_penalties(
                penalty_last_n,
                penalty_repeat,
                penalty_freq,
                penalty_present,
            )
        };
        Self { sampler }
    }

    /// Mirostat 1.0 algorithm described in the paper <https://arxiv.org/abs/2007.14966>. Uses tokens instead of words.
    ///
    /// # Parameters:
    /// - ``n_vocab``: [`LlamaModel::n_vocab`]
    /// - ``seed``: Seed to initialize random generation with.
    /// - ``tau``: The target cross-entropy (or surprise) value you want to achieve for the
    ///     generated text. A higher value corresponds to more surprising or less predictable text,
    ///     while a lower value corresponds to less surprising or more predictable text.
    /// - ``eta``: The learning rate used to update `mu` based on the error between the target and
    ///     observed surprisal of the sampled word. A larger learning rate will cause `mu` to be
    ///     updated more quickly, while a smaller learning rate will result in slower updates.
    /// - ``m``: The number of tokens considered in the estimation of `s_hat`. This is an arbitrary
    ///     value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`.
    ///     In the paper, they use `m = 100`, but you can experiment with different values to see how
    ///     it affects the performance of the algorithm.
    #[must_use]
    pub fn mirostat(n_vocab: i32, seed: u32, tau: f32, eta: f32, m: i32) -> Self {
        let sampler =
            unsafe { llama_cpp_sys_2::llama_sampler_init_mirostat(n_vocab, seed, tau, eta, m) };
        Self { sampler }
    }

    /// Mirostat 2.0 algorithm described in the paper <https://arxiv.org/abs/2007.14966>. Uses tokens instead of words.
    ///
    /// # Parameters:
    /// - ``seed``: Seed to initialize random generation with.
    /// - ``tau``: The target cross-entropy (or surprise) value you want to achieve for the
    ///     generated text. A higher value corresponds to more surprising or less predictable text,
    ///     while a lower value corresponds to less surprising or more predictable text.
    /// - ``eta``: The learning rate used to update `mu` based on the error between the target and
    ///     observed surprisal of the sampled word. A larger learning rate will cause `mu` to be
    ///     updated more quickly, while a smaller learning rate will result in slower updates.
    #[must_use]
    pub fn mirostat_v2(seed: u32, tau: f32, eta: f32) -> Self {
        let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_mirostat_v2(seed, tau, eta) };
        Self { sampler }
    }

    /// Selects a token at random based on each token's probabilities
    #[must_use]
    pub fn dist(seed: u32) -> Self {
        let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_dist(seed) };
        Self { sampler }
    }

    /// Selects the most likely token
    ///
    /// # Example:
    /// ```rust
    /// use llama_cpp_2::token::{
    ///    LlamaToken,
    ///    data::LlamaTokenData,
    ///    data_array::LlamaTokenDataArray
    /// };
    /// use llama_cpp_2::sampling::LlamaSampler;
    ///
    /// let mut data_array = LlamaTokenDataArray::new(vec![
    ///     LlamaTokenData::new(LlamaToken(0), 0., 0.),
    ///     LlamaTokenData::new(LlamaToken(1), 1., 0.),
    /// ], false);
    ///
    /// data_array.apply_sampler(&mut LlamaSampler::greedy());
    ///
    /// assert_eq!(data_array.data.len(), 2);
    /// assert_eq!(data_array.selected_token(), Some(LlamaToken(1)));
    /// ```
    #[must_use]
    pub fn greedy() -> Self {
        let sampler = unsafe { llama_cpp_sys_2::llama_sampler_init_greedy() };
        Self { sampler }
    }
}

impl Drop for LlamaSampler {
    fn drop(&mut self) {
        unsafe {
            llama_cpp_sys_2::llama_sampler_free(self.sampler);
        }
    }
}