pub unsafe extern "C" fn llama_sample_token_mirostat_v2(
ctx: *mut llama_context,
candidates: *mut llama_token_data_array,
tau: f32,
eta: f32,
mu: *mut f32,
) -> llama_token
Expand description
@details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
@param candidates A vector of llama_token_data
containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
@param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
@param eta The learning rate used to update mu
based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause mu
to be updated more quickly, while a smaller learning rate will result in slower updates.
@param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (2 * tau
) and is updated in the algorithm based on the error between the target and observed surprisal.