llm_chain_llama_sys

Function llama_sample_token_mirostat_v2

Source
pub unsafe extern "C" fn llama_sample_token_mirostat_v2(
    ctx: *mut llama_context,
    candidates: *mut llama_token_data_array,
    tau: f32,
    eta: f32,
    mu: *mut f32,
) -> llama_token
Expand description

@details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. @param candidates A vector of llama_token_data containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. @param eta The learning rate used to update mu based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause mu to be updated more quickly, while a smaller learning rate will result in slower updates. @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (2 * tau) and is updated in the algorithm based on the error between the target and observed surprisal.