llm_chain_llama/
executor.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
use std::marker::PhantomData;
use std::sync::Arc;

use crate::context::{ContextParams, LLamaContext};
use crate::options::{get_executor_initial_opts, LlamaInvocation, DEFAULT_OPTIONS};
use crate::tokenizer::{embedding_to_output, llama_token_eos, tokenize, tokens_to_string};

use async_trait::async_trait;

use llm_chain::options::{options_from_env, Options, OptionsCascade};
use llm_chain::output::{Output, StreamSegment};
use llm_chain::prompt::{ChatRole, Prompt};

use llm_chain::tokens::{PromptTokensError, TokenCollection, TokenCount};
use llm_chain::tokens::{Tokenizer, TokenizerError};
use llm_chain::traits::{Executor as ExecutorTrait, ExecutorCreationError, ExecutorError};
use tokio::sync::Mutex;

macro_rules! bail {
    ($val:expr, $sender:expr) => {
        match $val {
            Ok(value) => value,
            Err(err) => {
                must_send!($sender, StreamSegment::Err(err.into()));
                return;
            }
        }
    };
}

macro_rules! must_send {
    ($sender:expr, $val:expr) => {
        if $sender.send($val).is_err() {
            panic!("unable to send message");
        }
    };
}

/// Executor is responsible for running the LLAMA model and managing its context.
pub struct Executor {
    context: Arc<Mutex<LLamaContext>>,
    options: Options,
    context_params: ContextParams,
}

impl Executor {
    fn get_cascade<'a>(&'a self, options: &'a Options) -> OptionsCascade<'a> {
        let v: Vec<&'a Options> = vec![&DEFAULT_OPTIONS, &self.options, options];
        OptionsCascade::from_vec(v)
    }

    // Run the LLAMA model with the provided input and generate output.
    // Executes the model with the provided input and context parameters.
    async fn run_model(&self, input: LlamaInvocation) -> Output {
        let (sender, output) = Output::new_stream();
        // Tokenize the stop sequence and input prompt.
        let context = self.context.clone();
        let context_params = self.context_params.clone();
        let context_size = context_params.n_ctx as usize;
        let answer_prefix = self.answer_prefix(&input.prompt);
        tokio::task::spawn_blocking(move || {
            let context_size = context_size;
            let context = context.blocking_lock();
            let tokenized_stop_prompt = tokenize(
                &context,
                input
                    .stop_sequence
                    .first() // XXX: Handle multiple stop seqs
                    .map(|x| x.as_str())
                    .unwrap_or("\n\n"),
                false,
            );

            if tokenized_stop_prompt.len() > context_size {
                must_send!(sender, StreamSegment::Err(ExecutorError::ContextTooSmall));
                return;
            }

            let prompt_text = input.prompt.to_text();
            let tokenized_input = tokenize(&context, prompt_text.as_str(), true);
            if tokenized_input.len() > context_size {
                must_send!(sender, StreamSegment::Err(ExecutorError::ContextTooSmall));
                return;
            }

            // Embd contains the prompt and the completion. The longer the prompt, the shorter the completion.
            let mut embd = tokenized_input.clone();

            // Evaluate the prompt in full.
            bail!(
                context
                    .llama_eval(
                        tokenized_input.as_slice(),
                        tokenized_input.len() as i32,
                        0,
                        &input,
                    )
                    .map_err(|e| ExecutorError::InnerError(e.into())),
                sender
            );

            let mut n_remaining = context_size - tokenized_input.len();
            let mut n_used = tokenized_input.len() - 1;
            if let Some(prefix) = answer_prefix {
                let tokenized_answer_prefix = tokenize(&context, prefix.as_str(), false);
                if tokenized_answer_prefix.len() > context_size {
                    must_send!(sender, StreamSegment::Err(ExecutorError::ContextTooSmall));
                    return;
                }

                // Evaluate the answer prefix (the role -- should be Assistant: )
                bail!(
                    context
                        .llama_eval(
                            tokenized_answer_prefix.as_slice(),
                            tokenized_answer_prefix.len() as i32,
                            n_used as i32,
                            &input,
                        )
                        .map_err(|e| ExecutorError::InnerError(e.into())),
                    sender
                );
                n_remaining -= tokenized_answer_prefix.len();
                n_used += tokenized_answer_prefix.len();
                embd.extend(tokenized_answer_prefix);
            }
            embd.resize(context_size, 0);
            let token_eos = llama_token_eos();
            let mut stop_sequence_i = 0;
            // Generate remaining tokens.
            let mut leftover_bytes: Vec<u8> = vec![];
            while n_remaining > 0 {
                let tok = context.llama_sample(
                    context_size as i32,
                    embd.as_slice(),
                    n_used as i32,
                    &input,
                );
                n_used += 1;
                n_remaining -= 1;
                embd[n_used] = tok;
                if tok == token_eos {
                    break;
                }
                if input.n_tok_predict != 0
                    && n_used > input.n_tok_predict + tokenized_input.len() - 1
                {
                    break;
                }
                if tok == tokenized_stop_prompt[stop_sequence_i] {
                    stop_sequence_i += 1;
                    if stop_sequence_i >= tokenized_stop_prompt.len() {
                        break;
                    }
                } else {
                    let str_output =
                        tokens_to_string(&context, &embd[n_used - stop_sequence_i..n_used]);
                    // XXX: make into chat if chat
                    must_send!(sender, StreamSegment::Content(str_output));
                    stop_sequence_i = 0;
                }
                bail!(
                    context
                        .llama_eval(&embd[n_used..], 1, n_used as i32, &input)
                        .map_err(|e| ExecutorError::InnerError(e.into())),
                    sender
                );

                if n_used >= tokenized_input.len() && stop_sequence_i == 0 {
                    let bytes_output: Vec<u8> =
                        [leftover_bytes, context.llama_token_to_bytes(&embd[n_used])].concat();

                    let (str_output, leftover) = decode_up_to_valid_utf8(&bytes_output);
                    leftover_bytes = leftover;
                    // XXX: make into chat if chat
                    if sender.send(StreamSegment::Content(str_output)).is_err() {
                        panic!("Failed to send");
                    }
                }
            }
            if sender
                .send(StreamSegment::Content(
                    std::char::REPLACEMENT_CHARACTER
                        .to_string()
                        .repeat(leftover_bytes.len()),
                ))
                .is_err()
            {
                panic!("Failed to send");
            }
        }); //JoinHandle is dropped? not sure how this works

        output
    }
}

/// Implement the ExecutorTrait for the Executor, defining methods for handling input and output.
#[async_trait]
impl ExecutorTrait for Executor {
    type StepTokenizer<'a> = LLamaTokenizer<'a>;
    fn new_with_options(options: Options) -> Result<Executor, ExecutorCreationError> {
        let opts_from_env =
            options_from_env().map_err(|err| ExecutorCreationError::InnerError(err.into()))?;
        let cas = OptionsCascade::new()
            .with_options(&DEFAULT_OPTIONS)
            .with_options(&opts_from_env)
            .with_options(&options);

        let (model_path, context_params) = get_executor_initial_opts(&cas)?;
        Ok(Self {
            context: Arc::new(Mutex::new(LLamaContext::from_file_and_params(
                &model_path,
                Some(&context_params),
            )?)),
            options,
            context_params,
        })
    }
    // Executes the model asynchronously and returns the output.
    async fn execute(&self, options: &Options, prompt: &Prompt) -> Result<Output, ExecutorError> {
        let invocation = LlamaInvocation::new(self.get_cascade(options), prompt)
            .map_err(|_| ExecutorError::InvalidOptions);
        Ok(self.run_model(invocation?).await)
    }

    fn tokens_used(
        &self,
        options: &Options,
        prompt: &Prompt,
    ) -> Result<TokenCount, PromptTokensError> {
        let tokenizer = self.get_tokenizer(options)?;
        let input = prompt.to_text();
        let mut tokens_used = tokenizer
            .tokenize_str(&input)
            .map_err(|_e| PromptTokensError::UnableToCompute)?
            .len() as i32;
        // includes answer_prefix
        let answer_prefix = self.answer_prefix(prompt);
        if let Some(prefix) = answer_prefix {
            let answer_used = tokenizer
                .tokenize_str(&prefix)
                .map_err(|_e| PromptTokensError::UnableToCompute)?
                .len() as i32;
            tokens_used += answer_used
        }
        let max_tokens = self.max_tokens_allowed(options);
        Ok(TokenCount::new(max_tokens, tokens_used))
    }

    fn answer_prefix(&self, prompt: &Prompt) -> Option<String> {
        if let llm_chain::prompt::Data::Chat(_) = prompt {
            // Tokenize answer prefix
            // XXX: Make the format dynamic
            let prefix = if prompt.to_text().ends_with('\n') {
                ""
            } else {
                "\n"
            };
            Some(format!("{}{}:", prefix, ChatRole::Assistant))
        } else {
            None
        }
    }

    fn max_tokens_allowed(&self, _step: &Options) -> i32 {
        self.context_params.n_ctx
    }

    fn get_tokenizer(&self, _step: &Options) -> Result<LLamaTokenizer, TokenizerError> {
        Ok(LLamaTokenizer::new(self))
    }
}

pub struct LLamaTokenizer<'a> {
    _lifetime: PhantomData<&'a ()>,
    context: Arc<Mutex<LLamaContext>>,
}

impl<'a> LLamaTokenizer<'a> {
    pub fn new(executor: &'a Executor) -> Self {
        LLamaTokenizer {
            context: executor.context.clone(),
            _lifetime: PhantomData::default(),
        }
    }
}

impl Tokenizer for LLamaTokenizer<'_> {
    fn tokenize_str(&self, doc: &str) -> Result<TokenCollection, TokenizerError> {
        let tokenized = tokio::task::block_in_place(|| {
            let context = self.context.blocking_lock();
            tokenize(&context, doc, true)
        });
        Ok(tokenized.into())
    }

    fn to_string(&self, tokens: TokenCollection) -> Result<String, TokenizerError> {
        let tokens = &tokens.as_i32()?;
        let output = tokio::task::block_in_place(|| {
            let context = self.context.blocking_lock();
            embedding_to_output(&context, tokens)
        });
        Ok(output.to_string())
    }
}

fn decode_up_to_valid_utf8(bytes: &[u8]) -> (String, Vec<u8>) {
    let (str_output, leftover): (String, Vec<u8>) = match std::str::from_utf8(bytes) {
        Ok(s) => (s.to_owned(), Vec::new()),
        Err(unicode_err) => {
            let index = unicode_err.valid_up_to();
            let good = &bytes[0..index];
            match unicode_err.error_len() {
                None => {
                    let leftover = bytes[index..].to_vec();
                    let out = std::str::from_utf8(good).unwrap().to_owned();
                    (out, leftover)
                }
                Some(len) => {
                    //let bad = &bytes[index..index+len];
                    //eprintln!("bad utf8: {:?}", bad);
                    let rest = &bytes[index + len..];
                    let beggining = std::str::from_utf8(good).unwrap().to_owned();
                    let (after, leftover) = decode_up_to_valid_utf8(rest);

                    let mut out = beggining;
                    out.push_str(&std::char::REPLACEMENT_CHARACTER.to_string().repeat(len));
                    out.push_str(&after);

                    (out, leftover)
                }
            }
        }
    };
    (str_output, leftover)
}