llm_chain/
options.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
use lazy_static::lazy_static;
use paste::paste;
use std::{collections::HashMap, env::VarError, ffi::OsStr};

use serde::{Deserialize, Serialize};
use strum_macros::EnumDiscriminants;

use crate::tokens::Token;

/// A collection of options that can be used to configure a model.
#[derive(Default, Debug, Clone, Serialize, Deserialize)]
/// `Options` is the struct that represents a set of options for a large language model.
/// It provides methods for creating, adding, and retrieving options.
///
/// The 'Options' struct is mainly created using the `OptionsBuilder` to allow for
/// flexibility in setting options.
pub struct Options {
    /// The actual options, stored as a vector.
    opts: Vec<Opt>,
}

#[derive(thiserror::Error, Debug)]
/// An error indicating that a required option is not set.
#[error("Option not set")]
struct OptionNotSetError;

lazy_static! {
    /// An empty set of options, useful as a default.
    static ref EMPTY_OPTIONS: Options = Options::builder().build();
}

impl Options {
    /// Constructs a new `OptionsBuilder` for creating an `Options` instance.
    ///
    /// This function serves as an entry point for using the builder pattern to create `Options`.
    ///
    /// # Returns
    ///
    /// An `OptionsBuilder` instance.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use llm_chain::options::*;
    /// let builder = Options::builder();
    /// ```
    pub fn builder() -> OptionsBuilder {
        OptionsBuilder::new()
    }

    /// Returns a reference to an empty set of options.
    ///
    /// This function provides a static reference to an empty `Options` instance,
    /// which can be useful as a default value.
    ///
    /// # Returns
    ///
    /// A reference to an empty `Options`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use llm_chain::options::*;
    /// let empty_options = Options::empty();
    /// ```
    pub fn empty() -> &'static Self {
        &EMPTY_OPTIONS
    }
    /// Gets the value of an option from this set of options.
    ///
    /// This function finds the first option in `opts` that matches the provided `OptDiscriminants`.
    ///
    /// # Arguments
    ///
    /// * `opt_discriminant` - An `OptDiscriminants` value representing the discriminant of the desired `Opt`.
    ///
    /// # Returns
    ///
    /// An `Option` that contains a reference to the `Opt` if found, or `None` if not found.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use llm_chain::options::*;
    /// let mut builder = Options::builder();
    /// builder.add_option(Opt::Model(ModelRef::from_path("path_to_model")));
    /// let options = builder.build();
    /// let model_option = options.get(OptDiscriminants::Model);
    /// ```
    pub fn get(&self, opt_discriminant: OptDiscriminants) -> Option<&Opt> {
        self.opts
            .iter()
            .find(|opt| OptDiscriminants::from(*opt) == opt_discriminant)
    }
}

/// `options!` is a declarative macro that facilitates the creation of an `Options` instance.
///
/// # Usage
///
/// This macro can be used to construct an instance of `Options` using a more readable and
/// ergonomic syntax. The syntax of the macro is:
///
/// ```ignore
/// options!{
///     OptionName1: value1,
///     OptionName2: value2,
///     ...
/// }
/// ```
///
/// Here, `OptionNameN` is the identifier of the option you want to set, and `valueN` is the value
/// you want to assign to that option.
///
/// # Example
///
/// ```ignore
/// let options = options!{
///     FooBar: "lol",
///     SomeReadyMadeOption: "another_value"
/// };
/// ```
///
/// In this example, an instance of `Options` is being created with two options: `FooBar` and
/// `SomeReadyMadeOption`, which are set to `"lol"` and `"another_value"`, respectively.
///
/// # Notes
///
/// - The option identifier (`OptionNameN`) must match an enum variant in `Opt`. If the identifier
///   does not match any of the `Opt` variants, a compilation error will occur.
///
/// - The value (`valueN`) should be of a type that is acceptable for the corresponding option.
///   If the value type does not match the expected type for the option, a compilation error will occur.
///
#[macro_export]
macro_rules! options {
    ( $( $opt_name:ident : $opt_value:expr ),* ) => {
        {
            let mut _opts = $crate::options::Options::builder();
            $(
                _opts.add_option($crate::options::Opt::$opt_name($opt_value.into()));
            )*
            _opts.build()
        }
    };
}

/// `OptionsBuilder` is a helper structure used to construct `Options` in a flexible way.
///
/// `OptionsBuilder` follows the builder pattern, providing a fluent interface to add options
/// and finally, build an `Options` instance. This pattern is used to handle cases where the `Options`
/// instance may require complex configuration or optional fields.
///
///
/// # Example
///
/// ```rust
/// # use llm_chain::options::*;
/// let mut builder = OptionsBuilder::new();
/// builder.add_option(Opt::Model(ModelRef::from_path("path_to_model")));
/// let options = builder.build();
/// ```
#[derive(Default, Debug, Clone, Serialize, Deserialize)]
pub struct OptionsBuilder {
    /// A Vec<Opt> field that holds the options to be added to the `Options` instance.
    opts: Vec<Opt>,
}

impl OptionsBuilder {
    /// Constructs a new, empty `OptionsBuilder`.
    ///
    /// Returns an `OptionsBuilder` instance with an empty `opts` field.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use llm_chain::options::*;
    /// let builder = OptionsBuilder::new();
    /// ```
    pub fn new() -> Self {
        OptionsBuilder { opts: Vec::new() }
    }

    /// Adds an option to the `OptionsBuilder`.
    ///
    /// This function takes an `Opt` instance and pushes it to the `opts` field.
    ///
    /// # Arguments
    ///
    /// * `opt` - An `Opt` instance to be added to the `OptionsBuilder`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use llm_chain::options::*;
    /// let mut builder = OptionsBuilder::new();
    /// builder.add_option(Opt::Model(ModelRef::from_path("path_to_model")));
    /// ```
    pub fn add_option(&mut self, opt: Opt) {
        self.opts.push(opt);
    }

    /// Consumes the `OptionsBuilder`, returning an `Options` instance.
    ///
    /// This function consumes the `OptionsBuilder`, moving its `opts` field to a new `Options` instance.
    ///
    /// # Returns
    ///
    /// An `Options` instance with the options added through the builder.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use llm_chain::options::*;
    /// let mut builder = OptionsBuilder::new();
    /// builder.add_option(Opt::Model(ModelRef::from_path("path_to_model")));
    /// let options = builder.build();
    /// ```
    pub fn build(self) -> Options {
        Options { opts: self.opts }
    }
}

/// A cascade of option sets.
///
/// Options added later in the cascade override earlier options.
pub struct OptionsCascade<'a> {
    /// The sets of options, in the order they were added.
    cascades: Vec<&'a Options>,
}

impl<'a> OptionsCascade<'a> {
    /// Creates a new, empty cascade of options.
    pub fn new() -> Self {
        OptionsCascade::from_vec(Vec::new())
    }

    /// Setups a typical options cascade, with model_defaults, environment defaults a model config and possibly a specific config.
    pub fn new_typical(
        model_default: &'a Options,
        env_defaults: &'a Options,
        model_config: &'a Options,
        specific_config: Option<&'a Options>,
    ) -> Self {
        let mut v = vec![model_default, env_defaults, model_config];
        if let Some(specific_config) = specific_config {
            v.push(specific_config);
        }
        Self::from_vec(v)
    }

    /// Creates a new cascade of options from a vector of option sets.
    pub fn from_vec(cascades: Vec<&'a Options>) -> Self {
        OptionsCascade { cascades }
    }

    /// Returns a new cascade of options with the given set of options added.
    pub fn with_options(mut self, options: &'a Options) -> Self {
        self.cascades.push(options);
        self
    }

    /// Gets the value of an option from this cascade.
    ///
    /// Returns `None` if the option is not present in any set in this cascade.
    /// If the option is present in multiple sets, the value from the most
    /// recently added set is returned.
    pub fn get(&self, opt_discriminant: OptDiscriminants) -> Option<&Opt> {
        for options in self.cascades.iter().rev() {
            if let Some(opt) = options.get(opt_discriminant) {
                return Some(opt);
            }
        }
        None
    }

    /// Returns a boolean indicating if options indicate that requests should be streamed or not.
    pub fn is_streaming(&self) -> bool {
        let Some(Opt::Stream(val)) = self.get(OptDiscriminants::Stream) else {
            return false;
        };
        *val
    }
}

impl<'a> Default for OptionsCascade<'a> {
    /// Returns a new, empty cascade of options.
    fn default() -> Self {
        Self::new()
    }
}

#[derive(Clone, Debug, Serialize, Deserialize)]
/// A reference to a model name or path
/// Useful for
pub struct ModelRef(String);

impl ModelRef {
    pub fn from_path<S: Into<String>>(p: S) -> Self {
        Self(p.into())
    }
    pub fn from_model_name<S: Into<String>>(model_name: S) -> Self {
        Self(model_name.into())
    }
    /// Returns the path for this model reference
    pub fn to_path(&self) -> String {
        self.0.clone()
    }
    /// Returns the name of the model
    pub fn to_name(&self) -> String {
        self.0.clone()
    }
}

/// A list of tokens to bias during the process of inferencing.
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct TokenBias(Vec<(Token, f32)>); // TODO: Serialize to a JSON object of str(F32) =>

impl TokenBias {
    /// Returns the token bias as a hashmap where the keys are i32 and the value f32. If the type doesn't match returns None
    pub fn as_i32_f32_hashmap(&self) -> Option<HashMap<i32, f32>> {
        let mut map = HashMap::new();
        for (token, value) in &self.0 {
            map.insert(token.to_i32()?, *value);
        }
        Some(map)
    }
}

#[derive(EnumDiscriminants, Clone, Debug, Serialize, Deserialize)]
pub enum Opt {
    /// The name or path of the model used.
    Model(ModelRef),
    /// The API key for the model service.
    ApiKey(String),
    /// The number of threads to use for parallel processing.
    /// This is common to all models.
    NThreads(usize),
    /// The maximum number of tokens that the model will generate.
    /// This is common to all models.
    MaxTokens(usize),
    /// The maximum context size of the model.
    MaxContextSize(usize),
    /// The sequences that, when encountered, will cause the model to stop generating further tokens.
    /// OpenAI models allow up to four stop sequences.
    StopSequence(Vec<String>),
    /// Whether or not to use streaming mode.
    /// This is common to all models.
    Stream(bool),

    /// The penalty to apply for using frequent tokens.
    /// This is used by OpenAI and llama models.
    FrequencyPenalty(f32),
    /// The penalty to apply for using novel tokens.
    /// This is used by OpenAI and llama models.
    PresencePenalty(f32),

    /// A bias to apply to certain tokens during the inference process.
    /// This is known as logit bias in OpenAI and is also used in llm-chain-local.
    TokenBias(TokenBias),

    /// The maximum number of tokens to consider for each step of generation.
    /// This is common to all models, but is not used by OpenAI.
    TopK(i32),
    /// The cumulative probability threshold for token selection.
    /// This is common to all models.
    TopP(f32),
    /// The temperature to use for token selection. Higher values result in more random output.
    /// This is common to all models.
    Temperature(f32),
    /// The penalty to apply for repeated tokens.
    /// This is common to all models.
    RepeatPenalty(f32),
    /// The number of most recent tokens to consider when applying the repeat penalty.
    /// This is common to all models.
    RepeatPenaltyLastN(usize),

    /// The TfsZ parameter for llm-chain-llama.
    TfsZ(f32),
    /// The TypicalP parameter for llm-chain-llama.
    TypicalP(f32),
    /// The Mirostat parameter for llm-chain-llama.
    Mirostat(i32),
    /// The MirostatTau parameter for llm-chain-llama.
    MirostatTau(f32),
    /// The MirostatEta parameter for llm-chain-llama.
    MirostatEta(f32),
    /// Whether or not to penalize newline characters for llm-chain-llama.
    PenalizeNl(bool),

    /// The batch size for llm-chain-local.
    NBatch(usize),
    /// The username for llm-chain-openai.
    User(String),
    /// The type of the model.
    ModelType(String),
}

// Helper function to extract environment variables
fn option_from_env<K, F>(opts: &mut OptionsBuilder, key: K, f: F) -> Result<(), VarError>
where
    K: AsRef<OsStr>,
    F: FnOnce(String) -> Option<Opt>,
{
    match std::env::var(key) {
        Ok(v) => {
            if let Some(x) = f(v) {
                opts.add_option(x);
            }
            Ok(())
        }
        Err(VarError::NotPresent) => Ok(()),
        Err(e) => Err(e),
    }
}

// Conversion functions for each Opt variant
fn model_from_string(s: String) -> Option<Opt> {
    Some(Opt::Model(ModelRef::from_path(s)))
}

fn api_key_from_string(s: String) -> Option<Opt> {
    Some(Opt::ApiKey(s))
}

macro_rules! opt_parse_str {
    ($v:ident) => {
        paste! {
            fn [< $v:snake:lower _from_string >] (s: String) -> Option<Opt> {
                        Some(Opt::$v(s.parse().ok()?))
            }
        }
    };
}

opt_parse_str!(NThreads);
opt_parse_str!(MaxTokens);
opt_parse_str!(MaxContextSize);
// Skip stop sequence?
// Skip stream?

opt_parse_str!(FrequencyPenalty);
opt_parse_str!(PresencePenalty);
// Skip TokenBias for now
opt_parse_str!(TopK);
opt_parse_str!(TopP);
opt_parse_str!(Temperature);
opt_parse_str!(RepeatPenalty);
opt_parse_str!(RepeatPenaltyLastN);
opt_parse_str!(TfsZ);
opt_parse_str!(PenalizeNl);
opt_parse_str!(NBatch);

macro_rules! opt_from_env {
    ($opt:ident, $v:ident) => {
        paste! {
            option_from_env(&mut $opt, stringify!([<
                LLM_CHAIN_ $v:snake:upper
                >]), [< $v:snake:lower _from_string >])?;
        }
    };
}

macro_rules! opts_from_env {
    ($opt:ident, $($v:ident),*) => {
        $(
            opt_from_env!($opt, $v);
        )*
    };
}

/// Loads options from environment variables.
/// Every option that can be easily understood from a string is avaliable the name
/// of the option will be in upper snake case, that means that the option `Opt::ApiKey` has the environment variable
/// `LLM_CHAIN_API_KEY`
pub fn options_from_env() -> Result<Options, VarError> {
    let mut opts = OptionsBuilder::new();
    opts_from_env!(
        opts,
        Model,
        ApiKey,
        NThreads,
        MaxTokens,
        MaxContextSize,
        FrequencyPenalty,
        PresencePenalty,
        TopK,
        TopP,
        Temperature,
        RepeatPenalty,
        RepeatPenaltyLastN,
        TfsZ,
        PenalizeNl,
        NBatch
    );
    Ok(opts.build())
}

#[cfg(test)]
mod tests {
    use super::*;
    // Tests for FromStr
    #[test]
    fn test_options_from_env() {
        use std::env;
        let orig_model = "/123/123.bin";
        let orig_nbatch = 1_usize;
        let orig_api_key = "!asd";
        env::set_var("LLM_CHAIN_MODEL", orig_model);
        env::set_var("LLM_CHAIN_N_BATCH", orig_nbatch.to_string());
        env::set_var("LLM_CHAIN_API_KEY", orig_api_key);
        let opts = options_from_env().unwrap();
        let model_path = opts
            .get(OptDiscriminants::Model)
            .and_then(|x| match x {
                Opt::Model(m) => Some(m),
                _ => None,
            })
            .unwrap();
        let nbatch = opts
            .get(OptDiscriminants::NBatch)
            .and_then(|x| match x {
                Opt::NBatch(m) => Some(m),
                _ => None,
            })
            .unwrap();
        let api_key = opts
            .get(OptDiscriminants::ApiKey)
            .and_then(|x| match x {
                Opt::ApiKey(m) => Some(m),
                _ => None,
            })
            .unwrap();
        assert_eq!(model_path.to_path(), orig_model);
        assert_eq!(nbatch.clone(), orig_nbatch);
        assert_eq!(api_key, orig_api_key);
    }
}