1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
//! Process local storage
//!
//! This implementation is mostly a copy of Rust's thread local implementation.

use std::cell::{Cell, Ref, RefCell, RefMut};
use std::fmt;

/// A process local storage which owns its contents.
///
/// It is instantiated with the [`process_local!`] macro and the primary method
/// is the [`with`] method.
///
/// The [`with`] method yields a reference to the contained value which cannot
/// escape the given closure.
///
/// [`process_local!`]: crate::process_local!
///
/// # Initialization and Destruction
///
/// Initialization is dynamically performed on the first call to [`with`]
/// within a process, and values are **never** destructed. This means if a
/// process finishes normally or panics, the [`Drop`] implementation will never
/// be called.
///
/// A `ProcessLocal`'s initializer cannot recursively depend on itself, and
/// using a `ProcessLocal` in this way will cause the initializer to infinitely
/// recourse on the first call to `with`.
///
/// [`with`]: ProcessLocal::with
///
/// # Examples
///
/// ```
/// use lunatic::{process_local, spawn_link};
/// use std::cell::RefCell;
///
/// process_local!(static FOO: RefCell<u32> = RefCell::new(1));
///
/// FOO.with(|f| {
///     assert_eq!(*f.borrow(), 1);
///     *f.borrow_mut() = 2;
/// });
///
/// // each process starts out with the initial value of 1
/// let child = spawn_link!(@task || {
///     FOO.with(|f| {
///         assert_eq!(*f.borrow(), 1);
///         *f.borrow_mut() = 3;
///     });
/// });
///
/// // wait for the process to complete
/// let _ = child.result();
///
/// // we retain our original value of 2 despite the child process
/// FOO.with(|f| {
///     assert_eq!(*f.borrow(), 2);
/// });
/// ```
pub struct ProcessLocal<T: 'static> {
    // `*mut` is used instead of `&mut` because mutable references are not
    // allowed in const functions: https://github.com/rust-lang/rust/issues/57349
    //
    // Although this is an extra layer of indirection, it should in theory be
    // trivially devirtualizable by LLVM because the value of `inner` never
    // changes and the constant should be read-only within a crate. This mainly
    // only runs into problems when PLS statics are exported across crates.
    inner: unsafe fn(Option<*mut Option<T>>) -> Option<&'static T>,
}

impl<T: 'static> fmt::Debug for ProcessLocal<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ProcessLocal").finish_non_exhaustive()
    }
}

/// Declare a new process local storage of type [`ProcessLocal`].
///
/// # Syntax
///
/// The macro wraps any number of static declarations and makes them process
/// local. Publicity and attributes for each static are allowed. Example:
///
/// ```
/// use std::cell::RefCell;
/// process_local! {
///     pub static FOO: RefCell<u32> = RefCell::new(1);
///
///     #[allow(unused)]
///     static BAR: RefCell<f32> = RefCell::new(1.0);
/// }
/// # fn main() {}
/// ```
///
/// See [`ProcessLocal` documentation][`$crate::ProcessLocal`] for more
/// information.
///
/// [`$crate::ProcessLocal`]: crate::ProcessLocal
#[macro_export]
macro_rules! process_local {
    // empty (base case for the recursion)
    () => {};

    ($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = const { $init:expr }; $($rest:tt)*) => (
        $crate::__process_local_inner!($(#[$attr])* $vis $name, $t, const $init);
        $crate::process_local!($($rest)*);
    );

    ($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = const { $init:expr }) => (
        $crate::__process_local_inner!($(#[$attr])* $vis $name, $t, const $init);
    );

    // process multiple declarations
    ($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = $init:expr; $($rest:tt)*) => (
        $crate::__process_local_inner!($(#[$attr])* $vis $name, $t, $init);
        $crate::process_local!($($rest)*);
    );

    // handle a single declaration
    ($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = $init:expr) => (
        $crate::__process_local_inner!($(#[$attr])* $vis $name, $t, $init);
    );
}

#[doc(hidden)]
#[macro_export]
macro_rules! __process_local_inner {
    // used to generate the `ProcessLocal` value for const-initialized process locals
    (@key $t:ty, const $init:expr) => {{

        #[deny(unsafe_op_in_unsafe_fn)]
        unsafe fn __getit(
            _init: std::option::Option<&mut std::option::Option<$t>>,
        ) -> std::option::Option<&'static $t> {
            const INIT_EXPR: $t = $init;
            static mut VAL: $t = INIT_EXPR;
            unsafe { std::option::Option::Some(&VAL) }

        }

        unsafe {
            $crate::ProcessLocal::new(__getit)
        }
    }};

    // used to generate the `ProcessLocal` value for `process_local!`
    (@key $t:ty, $init:expr) => {
        {
            #[inline]
            fn __init() -> $t { $init }

            #[inline]
            unsafe fn __getit(
                init: std::option::Option<*mut std::option::Option<$t>>,
            ) -> std::option::Option<&'static $t> {
                static __KEY: $crate::__StaticProcessLocalInner<$t> =
                    $crate::__StaticProcessLocalInner::new();

                // FIXME: remove the #[allow(...)] marker when macros don't
                // raise warning for missing/extraneous unsafe blocks anymore.
                // See https://github.com/rust-lang/rust/issues/74838.
                #[allow(unused_unsafe)]
                unsafe {
                    __KEY.get(move || {
                        if let std::option::Option::Some(init) = init {
                            if let std::option::Option::Some(value) = init.as_mut().unwrap().take() {
                                return value;
                            } else if std::cfg!(debug_assertions) {
                                std::unreachable!("missing default value");
                            }
                        }
                        __init()
                    })
                }
            }

            unsafe {
                $crate::ProcessLocal::new(__getit)
            }
        }
    };
    ($(#[$attr:meta])* $vis:vis $name:ident, $t:ty, $($init:tt)*) => {
        $(#[$attr])* $vis const $name: $crate::ProcessLocal<$t> =
            $crate::__process_local_inner!(@key $t, $($init)*);
    }
}

impl<T: 'static> ProcessLocal<T> {
    #[doc(hidden)]
    pub const unsafe fn new(
        inner: unsafe fn(Option<*mut Option<T>>) -> Option<&'static T>,
    ) -> ProcessLocal<T> {
        ProcessLocal { inner }
    }

    /// Acquires a reference to the value in this process local.
    ///
    /// This will lazily initialize the value if this process has not referenced
    /// it yet.
    pub fn with<F, R>(&'static self, f: F) -> R
    where
        F: FnOnce(&'static T) -> R,
    {
        unsafe {
            let process_local =
                (self.inner)(None).expect("Failed to access process local variable");
            f(process_local)
        }
    }

    /// Acquires a reference to the value in this process local, initializing
    /// it with `init` if it wasn't already initialized in this process.
    ///
    /// If `init` was used to initialize the process local variable, `None` is
    /// passed as the first argument to `f`. If it was already initialized,
    /// `Some(init)` is passed to `f`.
    fn initialize_with<F, R>(&'static self, init: T, f: F) -> R
    where
        F: FnOnce(Option<T>, &'static T) -> R,
    {
        unsafe {
            let mut init = Some(init);
            let reference =
                (self.inner)(Some(&mut init)).expect("Failed to access process local variable");
            f(init, reference)
        }
    }
}

impl<T: 'static> ProcessLocal<Cell<T>> {
    /// Sets or initializes the contained value.
    ///
    /// Unlike the other methods, this will *not* run the lazy initializer of
    /// the process local. Instead, it will be directly initialized with the
    /// given value if it wasn't initialized yet.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// process_local! {
    ///     static X: Cell<i32> = panic!("!");
    /// }
    ///
    /// // Calling X.get() here would result in a panic.
    ///
    /// X.set(123); // But X.set() is fine, as it skips the initializer above.
    ///
    /// assert_eq!(X.get(), 123);
    /// ```
    pub fn set(&'static self, value: T) {
        self.initialize_with(Cell::new(value), |value, cell| {
            if let Some(value) = value {
                // The cell was already initialized, so `value` wasn't used to
                // initialize it. So we overwrite the current value with the
                // new one instead.
                cell.set(value.into_inner());
            }
        });
    }

    /// Returns a copy of the contained value.
    ///
    /// This will lazily initialize the value if this process has not referenced
    /// it yet.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// process_local! {
    ///     static X: Cell<i32> = Cell::new(1);
    /// }
    ///
    /// assert_eq!(X.get(), 1);
    /// ```
    pub fn get(&'static self) -> T
    where
        T: Copy,
    {
        self.with(|cell| cell.get())
    }

    /// Takes the contained value, leaving `Default::default()` in its place.
    ///
    /// This will lazily initialize the value if this process has not referenced
    /// it yet.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// process_local! {
    ///     static X: Cell<Option<i32>> = Cell::new(Some(1));
    /// }
    ///
    /// assert_eq!(X.take(), Some(1));
    /// assert_eq!(X.take(), None);
    /// ```
    pub fn take(&'static self) -> T
    where
        T: Default,
    {
        self.with(|cell| cell.take())
    }

    /// Replaces the contained value, returning the old value.
    ///
    /// This will lazily initialize the value if this process has not referenced
    /// it yet.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::Cell;
    ///
    /// process_local! {
    ///     static X: Cell<i32> = Cell::new(1);
    /// }
    ///
    /// assert_eq!(X.replace(2), 1);
    /// assert_eq!(X.replace(3), 2);
    /// ```
    pub fn replace(&'static self, value: T) -> T {
        self.with(|cell| cell.replace(value))
    }
}

impl<T: 'static> ProcessLocal<RefCell<T>> {
    /// Acquires a reference to the contained value.
    ///
    /// This will lazily initialize the value if this process has not referenced
    /// it yet.
    ///
    /// # Panics
    ///
    /// Panics if the value is currently mutably borrowed.
    ///
    /// # Example
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// process_local! {
    ///     static X: RefCell<Vec<i32>> = RefCell::new(Vec::new());
    /// }
    ///
    /// X.with_borrow(|v| assert!(v.is_empty()));
    /// ```
    pub fn with_borrow<F, R>(&'static self, f: F) -> R
    where
        F: FnOnce(Ref<'static, T>) -> R,
    {
        self.with(|cell| f(cell.borrow()))
    }

    /// Acquires a mutable reference to the contained value.
    ///
    /// This will lazily initialize the value if this process has not referenced
    /// it yet.
    ///
    /// # Panics
    ///
    /// Panics if the value is currently borrowed.
    ///
    /// # Example
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// process_local! {
    ///     static X: RefCell<Vec<i32>> = RefCell::new(Vec::new());
    /// }
    ///
    /// X.with_borrow_mut(|v| v.push(1));
    ///
    /// X.with_borrow(|v| assert_eq!(*v, vec![1]));
    /// ```
    pub fn with_borrow_mut<F, R>(&'static self, f: F) -> R
    where
        F: FnOnce(RefMut<'static, T>) -> R,
    {
        self.with(|cell| f(cell.borrow_mut()))
    }

    /// Sets or initializes the contained value.
    ///
    /// Unlike the other methods, this will *not* run the lazy initializer of
    /// the process local. Instead, it will be directly initialized with the
    /// given value if it wasn't initialized yet.
    ///
    /// # Panics
    ///
    /// Panics if the value is currently borrowed.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// process_local! {
    ///     static X: RefCell<Vec<i32>> = panic!("!");
    /// }
    ///
    /// // Calling X.with() here would result in a panic.
    ///
    /// X.set(vec![1, 2, 3]); // But X.set() is fine, as it skips the initializer above.
    ///
    /// X.with_borrow(|v| assert_eq!(*v, vec![1, 2, 3]));
    /// ```
    pub fn set(&'static self, value: T) {
        self.initialize_with(RefCell::new(value), |value, cell| {
            if let Some(value) = value {
                // The cell was already initialized, so `value` wasn't used to
                // initialize it. So we overwrite the current value with the
                // new one instead.
                *cell.borrow_mut() = value.into_inner();
            }
        });
    }

    /// Takes the contained value, leaving `Default::default()` in its place.
    ///
    /// This will lazily initialize the value if this process has not referenced
    /// it yet.
    ///
    /// # Panics
    ///
    /// Panics if the value is currently borrowed.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// process_local! {
    ///     static X: RefCell<Vec<i32>> = RefCell::new(Vec::new());
    /// }
    ///
    /// X.with_borrow_mut(|v| v.push(1));
    ///
    /// let a = X.take();
    ///
    /// assert_eq!(a, vec![1]);
    ///
    /// X.with_borrow(|v| assert!(v.is_empty()));
    /// ```
    pub fn take(&'static self) -> T
    where
        T: Default,
    {
        self.with(|cell| cell.take())
    }

    /// Replaces the contained value, returning the old value.
    ///
    /// # Panics
    ///
    /// Panics if the value is currently borrowed.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::RefCell;
    ///
    /// process_local! {
    ///     static X: RefCell<Vec<i32>> = RefCell::new(Vec::new());
    /// }
    ///
    /// let prev = X.replace(vec![1, 2, 3]);
    /// assert!(prev.is_empty());
    ///
    /// X.with_borrow(|v| assert_eq!(*v, vec![1, 2, 3]));
    /// ```
    pub fn replace(&'static self, value: T) -> T {
        self.with(|cell| cell.replace(value))
    }
}

#[doc(hidden)]
#[allow(unused_unsafe)]
mod lazy {
    use std::cell::UnsafeCell;
    use std::{hint, mem};

    pub struct LazyKeyInner<T> {
        inner: UnsafeCell<Option<T>>,
    }

    impl<T> LazyKeyInner<T> {
        pub const fn new() -> LazyKeyInner<T> {
            LazyKeyInner {
                inner: UnsafeCell::new(None),
            }
        }

        pub unsafe fn get(&self) -> Option<&'static T> {
            // SAFETY: The caller must ensure no reference is ever handed out to
            // the inner cell nor mutable reference to the Option<T> inside said
            // cell. This make it safe to hand a reference, though the lifetime
            // of 'static is itself unsafe, making the get method unsafe.
            unsafe { (*self.inner.get()).as_ref() }
        }

        /// The caller must ensure that no reference is active: this method
        /// needs unique access.
        pub unsafe fn initialize<F: FnOnce() -> T>(&self, init: F) -> &'static T {
            // Execute the initialization up front, *then* move it into our slot,
            // just in case initialization fails.
            let value = init();
            let ptr = self.inner.get();

            // SAFETY:
            //
            // note that this can in theory just be `*ptr = Some(value)`, but due to
            // the compiler will currently codegen that pattern with something like:
            //
            //      ptr::drop_in_place(ptr)
            //      ptr::write(ptr, Some(value))
            //
            // Due to this pattern it's possible for the destructor of the value in
            // `ptr` (e.g., if this is being recursively initialized) to re-access
            // PLS, in which case there will be a `&` and `&mut` pointer to the same
            // value (an aliasing violation). To avoid setting the "I'm running a
            // destructor" flag we just use `mem::replace` which should sequence the
            // operations a little differently and make this safe to call.
            //
            // The precondition also ensures that we are the only one accessing
            // `self` at the moment so replacing is fine.
            unsafe {
                let _ = mem::replace(&mut *ptr, Some(value));
            }

            // SAFETY: With the call to `mem::replace` it is guaranteed there is
            // a `Some` behind `ptr`, not a `None` so `unreachable_unchecked`
            // will never be reached.
            unsafe {
                // After storing `Some` we want to get a reference to the contents of
                // what we just stored. While we could use `unwrap` here and it should
                // always work it empirically doesn't seem to always get optimized away,
                // which means that using something like `with` can pull in panicking
                // code and cause a large size bloat.
                match *ptr {
                    Some(ref x) => x,
                    None => hint::unreachable_unchecked(),
                }
            }
        }

        /// The other methods hand out references while taking &self.
        /// As such, callers of this method must ensure no `&` and `&mut` are
        /// available and used at the same time.
        #[allow(unused)]
        pub unsafe fn take(&mut self) -> Option<T> {
            // SAFETY: See doc comment for this method.
            unsafe { (*self.inner.get()).take() }
        }
    }
}

#[doc(hidden)]
#[allow(unused_unsafe)]
pub mod statik {
    use std::fmt;

    use super::lazy::LazyKeyInner;

    pub struct Key<T> {
        inner: LazyKeyInner<T>,
    }

    unsafe impl<T> Sync for Key<T> {}

    impl<T> fmt::Debug for Key<T> {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            f.debug_struct("Key").finish_non_exhaustive()
        }
    }

    impl<T> Key<T> {
        pub const fn new() -> Key<T> {
            Key {
                inner: LazyKeyInner::new(),
            }
        }

        pub unsafe fn get(&self, init: impl FnOnce() -> T) -> Option<&'static T> {
            // SAFETY: The caller must ensure no reference is ever handed out to
            // the inner cell nor mutable reference to the Option<T> inside said
            // cell. This make it safe to hand a reference, though the lifetime
            // of 'static is itself unsafe, making the get method unsafe.
            let value = unsafe {
                match self.inner.get() {
                    Some(value) => value,
                    None => self.inner.initialize(init),
                }
            };

            Some(value)
        }
    }
}