lzma_rs/decode/stream.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
use crate::decode::lzbuffer::{LzBuffer, LzCircularBuffer};
use crate::decode::lzma::{DecoderState, LzmaParams};
use crate::decode::rangecoder::RangeDecoder;
use crate::decompress::Options;
use crate::error::Error;
use std::fmt::Debug;
use std::io::{self, BufRead, Cursor, Read, Write};
/// Minimum header length to be read.
/// - props: u8 (1 byte)
/// - dict_size: u32 (4 bytes)
const MIN_HEADER_LEN: usize = 5;
/// Max header length to be read.
/// - unpacked_size: u64 (8 bytes)
const MAX_HEADER_LEN: usize = MIN_HEADER_LEN + 8;
/// Required bytes after the header.
/// - ignore: u8 (1 byte)
/// - code: u32 (4 bytes)
const START_BYTES: usize = 5;
/// Maximum number of bytes to buffer while reading the header.
const MAX_TMP_LEN: usize = MAX_HEADER_LEN + START_BYTES;
/// Internal state of this streaming decoder. This is needed because we have to
/// initialize the stream before processing any data.
#[derive(Debug)]
enum State<W>
where
W: Write,
{
/// Stream is initialized but header values have not yet been read.
Header(W),
/// Header values have been read and the stream is ready to process more data.
Data(RunState<W>),
}
/// Structures needed while decoding data.
struct RunState<W>
where
W: Write,
{
decoder: DecoderState,
range: u32,
code: u32,
output: LzCircularBuffer<W>,
}
impl<W> Debug for RunState<W>
where
W: Write,
{
fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result {
fmt.debug_struct("RunState")
.field("range", &self.range)
.field("code", &self.code)
.finish()
}
}
/// Lzma decompressor that can process multiple chunks of data using the
/// `io::Write` interface.
#[cfg_attr(docsrs, doc(cfg(stream)))]
pub struct Stream<W>
where
W: Write,
{
/// Temporary buffer to hold data while the header is being read.
tmp: Cursor<[u8; MAX_TMP_LEN]>,
/// Whether the stream is initialized and ready to process data.
/// An `Option` is used to avoid interior mutability when updating the state.
state: Option<State<W>>,
/// Options given when a stream is created.
options: Options,
}
impl<W> Stream<W>
where
W: Write,
{
/// Initialize the stream. This will consume the `output` which is the sink
/// implementing `io::Write` that will receive decompressed bytes.
pub fn new(output: W) -> Self {
Self::new_with_options(&Options::default(), output)
}
/// Initialize the stream with the given `options`. This will consume the
/// `output` which is the sink implementing `io::Write` that will
/// receive decompressed bytes.
pub fn new_with_options(options: &Options, output: W) -> Self {
Self {
tmp: Cursor::new([0; MAX_TMP_LEN]),
state: Some(State::Header(output)),
options: *options,
}
}
/// Get a reference to the output sink
pub fn get_output(&self) -> Option<&W> {
self.state.as_ref().map(|state| match state {
State::Header(output) => &output,
State::Data(state) => state.output.get_output(),
})
}
/// Get a mutable reference to the output sink
pub fn get_output_mut(&mut self) -> Option<&mut W> {
self.state.as_mut().map(|state| match state {
State::Header(output) => output,
State::Data(state) => state.output.get_output_mut(),
})
}
/// Consumes the stream and returns the output sink. This also makes sure
/// we have properly reached the end of the stream.
pub fn finish(mut self) -> crate::error::Result<W> {
if let Some(state) = self.state.take() {
match state {
State::Header(output) => {
if self.tmp.position() > 0 {
Err(Error::LzmaError("failed to read header".to_string()))
} else {
Ok(output)
}
}
State::Data(mut state) => {
if !self.options.allow_incomplete {
// Process one last time with empty input to force end of
// stream checks
let mut stream =
Cursor::new(&self.tmp.get_ref()[0..self.tmp.position() as usize]);
let mut range_decoder =
RangeDecoder::from_parts(&mut stream, state.range, state.code);
state
.decoder
.process(&mut state.output, &mut range_decoder)?;
}
let output = state.output.finish()?;
Ok(output)
}
}
} else {
// this will occur if a call to `write()` fails
Err(Error::LzmaError(
"can't finish stream because of previous write error".to_string(),
))
}
}
/// Attempts to read the header and transition into a running state.
///
/// This function will consume the state, returning the next state on both
/// error and success.
fn read_header<R: BufRead>(
output: W,
mut input: &mut R,
options: &Options,
) -> crate::error::Result<State<W>> {
match LzmaParams::read_header(&mut input, options) {
Ok(params) => {
let decoder = DecoderState::new(params.properties, params.unpacked_size);
let output = LzCircularBuffer::from_stream(
output,
params.dict_size as usize,
options.memlimit.unwrap_or(usize::MAX),
);
// The RangeDecoder is only kept temporarily as we are processing
// chunks of data.
if let Ok(rangecoder) = RangeDecoder::new(&mut input) {
Ok(State::Data(RunState {
decoder,
output,
range: rangecoder.range,
code: rangecoder.code,
}))
} else {
// Failed to create a RangeDecoder because we need more data,
// try again later.
Ok(State::Header(output.into_output()))
}
}
// Failed to read_header() because we need more data, try again later.
Err(Error::HeaderTooShort(_)) => Ok(State::Header(output)),
// Fatal error. Don't retry.
Err(e) => Err(e),
}
}
/// Process compressed data
fn read_data<R: BufRead>(mut state: RunState<W>, mut input: &mut R) -> io::Result<RunState<W>> {
// Construct our RangeDecoder from the previous range and code
// values.
let mut rangecoder = RangeDecoder::from_parts(&mut input, state.range, state.code);
// Try to process all bytes of data.
state
.decoder
.process_stream(&mut state.output, &mut rangecoder)
.map_err(|e| -> io::Error { e.into() })?;
Ok(RunState {
decoder: state.decoder,
output: state.output,
range: rangecoder.range,
code: rangecoder.code,
})
}
}
impl<W> Debug for Stream<W>
where
W: Write + Debug,
{
fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result {
fmt.debug_struct("Stream")
.field("tmp", &self.tmp.position())
.field("state", &self.state)
.field("options", &self.options)
.finish()
}
}
impl<W> Write for Stream<W>
where
W: Write,
{
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
let mut input = Cursor::new(data);
if let Some(state) = self.state.take() {
let state = match state {
// Read the header values and transition into a running state.
State::Header(state) => {
let res = if self.tmp.position() > 0 {
// attempt to fill the tmp buffer
let position = self.tmp.position();
let bytes_read =
input.read(&mut self.tmp.get_mut()[position as usize..])?;
let bytes_read = if bytes_read < std::u64::MAX as usize {
bytes_read as u64
} else {
return Err(io::Error::new(
io::ErrorKind::Other,
"Failed to convert integer to u64.",
));
};
self.tmp.set_position(position + bytes_read);
// attempt to read the header from our tmp buffer
let (position, res) = {
let mut tmp_input =
Cursor::new(&self.tmp.get_ref()[0..self.tmp.position() as usize]);
let res = Stream::read_header(state, &mut tmp_input, &self.options);
(tmp_input.position(), res)
};
// discard all bytes up to position if reading the header
// was successful
if let Ok(State::Data(_)) = &res {
let tmp = *self.tmp.get_ref();
let end = self.tmp.position();
let new_len = end - position;
(&mut self.tmp.get_mut()[0..new_len as usize])
.copy_from_slice(&tmp[position as usize..end as usize]);
self.tmp.set_position(new_len);
}
res
} else {
Stream::read_header(state, &mut input, &self.options)
};
match res {
// occurs when not enough input bytes were provided to
// read the entire header
Ok(State::Header(val)) => {
if self.tmp.position() == 0 {
// reset the cursor because we may have partial reads
input.set_position(0);
let bytes_read = input.read(&mut self.tmp.get_mut()[..])?;
let bytes_read = if bytes_read < std::u64::MAX as usize {
bytes_read as u64
} else {
return Err(io::Error::new(
io::ErrorKind::Other,
"Failed to convert integer to u64.",
));
};
self.tmp.set_position(bytes_read);
}
State::Header(val)
}
// occurs when the header was successfully read and we
// move on to the next state
Ok(State::Data(val)) => State::Data(val),
// occurs when the output was consumed due to a
// non-recoverable error
Err(e) => {
return Err(match e {
Error::IoError(e) | Error::HeaderTooShort(e) => e,
Error::LzmaError(e) | Error::XzError(e) => {
io::Error::new(io::ErrorKind::Other, e)
}
});
}
}
}
// Process another chunk of data.
State::Data(state) => {
let state = if self.tmp.position() > 0 {
let mut tmp_input =
Cursor::new(&self.tmp.get_ref()[0..self.tmp.position() as usize]);
let res = Stream::read_data(state, &mut tmp_input)?;
self.tmp.set_position(0);
res
} else {
state
};
State::Data(Stream::read_data(state, &mut input)?)
}
};
self.state.replace(state);
}
Ok(input.position() as usize)
}
/// Flushes the output sink. The internal buffer isn't flushed to avoid
/// corrupting the internal state. Instead, call `finish()` to finalize the
/// stream and flush all remaining internal data.
fn flush(&mut self) -> io::Result<()> {
if let Some(ref mut state) = self.state {
match state {
State::Header(_) => Ok(()),
State::Data(state) => state.output.get_output_mut().flush(),
}
} else {
Ok(())
}
}
}
impl From<Error> for io::Error {
fn from(error: Error) -> io::Error {
io::Error::new(io::ErrorKind::Other, format!("{:?}", error))
}
}
#[cfg(test)]
mod test {
use super::*;
/// Test an empty stream
#[test]
fn test_stream_noop() {
let stream = Stream::new(Vec::new());
assert!(stream.get_output().unwrap().is_empty());
let output = stream.finish().unwrap();
assert!(output.is_empty());
}
/// Test writing an empty slice
#[test]
fn test_stream_zero() {
let mut stream = Stream::new(Vec::new());
stream.write_all(&[]).unwrap();
stream.write_all(&[]).unwrap();
let output = stream.finish().unwrap();
assert!(output.is_empty());
}
/// Test a bad header value
#[test]
#[should_panic(expected = "LZMA header invalid properties: 255 must be < 225")]
fn test_bad_header() {
let input = [255u8; 32];
let mut stream = Stream::new(Vec::new());
stream.write_all(&input[..]).unwrap();
let output = stream.finish().unwrap();
assert!(output.is_empty());
}
/// Test processing only partial data
#[test]
fn test_stream_incomplete() {
let input = b"\x5d\x00\x00\x80\x00\xff\xff\xff\xff\xff\xff\xff\xff\x00\x83\xff\
\xfb\xff\xff\xc0\x00\x00\x00";
// Process until this index is reached.
let mut end = 1u64;
// Test when we fail to provide the minimum number of bytes required to
// read the header. Header size is 13 bytes but we also read the first 5
// bytes of data.
while end < (MAX_HEADER_LEN + START_BYTES) as u64 {
let mut stream = Stream::new(Vec::new());
stream.write_all(&input[..end as usize]).unwrap();
assert_eq!(stream.tmp.position(), end);
let err = stream.finish().unwrap_err();
assert!(
err.to_string().contains("failed to read header"),
"error was: {}",
err
);
end += 1;
}
// Test when we fail to provide enough bytes to terminate the stream. A
// properly terminated stream will have a code value of 0.
while end < input.len() as u64 {
let mut stream = Stream::new(Vec::new());
stream.write_all(&input[..end as usize]).unwrap();
// Header bytes will be buffered until there are enough to read
if end < (MAX_HEADER_LEN + START_BYTES) as u64 {
assert_eq!(stream.tmp.position(), end);
}
let err = stream.finish().unwrap_err();
assert!(err.to_string().contains("failed to fill whole buffer"));
end += 1;
}
}
/// Test processing all chunk sizes
#[test]
fn test_stream_chunked() {
let small_input = include_bytes!("../../tests/files/small.txt");
let mut reader = io::Cursor::new(&small_input[..]);
let mut small_input_compressed = Vec::new();
crate::lzma_compress(&mut reader, &mut small_input_compressed).unwrap();
let input : Vec<(&[u8], &[u8])> = vec![
(b"\x5d\x00\x00\x80\x00\xff\xff\xff\xff\xff\xff\xff\xff\x00\x83\xff\xfb\xff\xff\xc0\x00\x00\x00", b""),
(&small_input_compressed[..], small_input)];
for (input, expected) in input {
for chunk in 1..input.len() {
let mut consumed = 0;
let mut stream = Stream::new(Vec::new());
while consumed < input.len() {
let end = std::cmp::min(consumed + chunk, input.len());
stream.write_all(&input[consumed..end]).unwrap();
consumed = end;
}
let output = stream.finish().unwrap();
assert_eq!(expected, &output[..]);
}
}
}
#[test]
fn test_stream_corrupted() {
let mut stream = Stream::new(Vec::new());
let err = stream
.write_all(b"corrupted bytes here corrupted bytes here")
.unwrap_err();
assert!(err.to_string().contains("beyond output size"));
let err = stream.finish().unwrap_err();
assert!(err
.to_string()
.contains("can\'t finish stream because of previous write error"));
}
#[test]
fn test_allow_incomplete() {
let input = include_bytes!("../../tests/files/small.txt");
let mut reader = io::Cursor::new(&input[..]);
let mut compressed = Vec::new();
crate::lzma_compress(&mut reader, &mut compressed).unwrap();
let compressed = &compressed[..compressed.len() / 2];
// Should fail to finish() without the allow_incomplete option.
let mut stream = Stream::new(Vec::new());
stream.write_all(&compressed[..]).unwrap();
stream.finish().unwrap_err();
// Should succeed with the allow_incomplete option.
let mut stream = Stream::new_with_options(
&Options {
allow_incomplete: true,
..Default::default()
},
Vec::new(),
);
stream.write_all(&compressed[..]).unwrap();
let output = stream.finish().unwrap();
assert_eq!(output, &input[..26]);
}
}