madsim_rdkafka/std/consumer/
stream_consumer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
//! High-level consumers with a [`Stream`](futures_util::Stream) interface.

use std::ffi::CString;
use std::marker::PhantomData;
use std::os::raw::c_void;
use std::pin::Pin;
use std::ptr;
use std::sync::{Arc, Mutex};
use std::task::{Context, Poll, Waker};
use std::time::Duration;

use crate::log::trace;
use futures_channel::oneshot;
use futures_util::future::{self, Either, FutureExt};
use futures_util::pin_mut;
use futures_util::stream::{Stream, StreamExt};
use slab::Slab;

use rdkafka_sys as rdsys;
use rdkafka_sys::types::*;

use crate::client::{Client, NativeQueue};
use crate::config::{ClientConfig, FromClientConfig, FromClientConfigAndContext};
use crate::consumer::base_consumer::BaseConsumer;
use crate::consumer::{
    CommitMode, Consumer, ConsumerContext, ConsumerGroupMetadata, DefaultConsumerContext,
    RebalanceProtocol,
};
use crate::error::{KafkaError, KafkaResult};
use crate::groups::GroupList;
use crate::message::BorrowedMessage;
use crate::metadata::Metadata;
use crate::topic_partition_list::{Offset, TopicPartitionList};
use crate::util::{AsyncRuntime, DefaultRuntime, NativePtr, Timeout};

unsafe extern "C" fn native_message_queue_nonempty_cb(_: *mut RDKafka, opaque_ptr: *mut c_void) {
    let wakers = &*(opaque_ptr as *const WakerSlab);
    wakers.wake_all();
}

unsafe fn enable_nonempty_callback(queue: &NativeQueue, wakers: &Arc<WakerSlab>) {
    rdsys::rd_kafka_queue_cb_event_enable(
        queue.ptr(),
        Some(native_message_queue_nonempty_cb),
        Arc::as_ptr(wakers) as *mut c_void,
    )
}

unsafe fn disable_nonempty_callback(queue: &NativeQueue) {
    rdsys::rd_kafka_queue_cb_event_enable(queue.ptr(), None, ptr::null_mut())
}

struct WakerSlab {
    wakers: Mutex<Slab<Option<Waker>>>,
}

impl WakerSlab {
    fn new() -> WakerSlab {
        WakerSlab {
            wakers: Mutex::new(Slab::new()),
        }
    }

    fn wake_all(&self) {
        let mut wakers = self.wakers.lock().unwrap();
        for (_, waker) in wakers.iter_mut() {
            if let Some(waker) = waker.take() {
                waker.wake();
            }
        }
    }

    fn register(&self) -> usize {
        let mut wakers = self.wakers.lock().expect("lock poisoned");
        wakers.insert(None)
    }

    fn unregister(&self, slot: usize) {
        let mut wakers = self.wakers.lock().expect("lock poisoned");
        wakers.remove(slot);
    }

    fn set_waker(&self, slot: usize, waker: Waker) {
        let mut wakers = self.wakers.lock().expect("lock poisoned");
        wakers[slot] = Some(waker);
    }
}

/// A stream of messages from a [`StreamConsumer`].
///
/// See the documentation of [`StreamConsumer::stream`] for details.
pub struct MessageStream<'a> {
    wakers: &'a WakerSlab,
    queue: &'a NativeQueue,
    slot: usize,
}

impl<'a> MessageStream<'a> {
    fn new(wakers: &'a WakerSlab, queue: &'a NativeQueue) -> MessageStream<'a> {
        let slot = wakers.register();
        MessageStream {
            wakers,
            queue,
            slot,
        }
    }

    fn poll(&self) -> Option<KafkaResult<BorrowedMessage<'a>>> {
        unsafe {
            NativePtr::from_ptr(rdsys::rd_kafka_consume_queue(self.queue.ptr(), 0))
                .map(|p| BorrowedMessage::from_consumer(p, self.queue))
        }
    }
}

impl<'a> Stream for MessageStream<'a> {
    type Item = KafkaResult<BorrowedMessage<'a>>;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        // If there is a message ready, yield it immediately to avoid the
        // taking the lock in `self.set_waker`.
        if let Some(message) = self.poll() {
            return Poll::Ready(Some(message));
        }

        // Otherwise, we need to wait for a message to become available. Store
        // the waker so that we are woken up if the queue flips from non-empty
        // to empty. We have to store the waker repatedly in case this future
        // migrates between tasks.
        self.wakers.set_waker(self.slot, cx.waker().clone());

        // Check whether a new message became available after we installed the
        // waker. This avoids a race where `poll` returns None to indicate that
        // the queue is empty, but the queue becomes non-empty before we've
        // installed the waker.
        match self.poll() {
            None => Poll::Pending,
            Some(message) => Poll::Ready(Some(message)),
        }
    }
}

impl<'a> Drop for MessageStream<'a> {
    fn drop(&mut self) {
        self.wakers.unregister(self.slot);
    }
}

/// A high-level consumer with a [`Stream`](futures_util::Stream) interface.
///
/// This consumer doesn't need to be polled explicitly. Extracting an item from
/// the stream returned by the [`stream`](StreamConsumer::stream) will
/// implicitly poll the underlying Kafka consumer.
///
/// If you activate the consumer group protocol by calling
/// [`subscribe`](Consumer::subscribe), the stream consumer will integrate with
/// librdkafka's liveness detection as described in [KIP-62]. You must be sure
/// that you attempt to extract a message from the stream consumer at least
/// every `max.poll.interval.ms` milliseconds, or librdkafka will assume that
/// the processing thread is wedged and leave the consumer groups.
///
/// [KIP-62]: https://cwiki.apache.org/confluence/display/KAFKA/KIP-62%3A+Allow+consumer+to+send+heartbeats+from+a+background+thread
#[must_use = "Consumer polling thread will stop immediately if unused"]
pub struct StreamConsumer<C = DefaultConsumerContext, R = DefaultRuntime>
where
    C: ConsumerContext,
{
    queue: NativeQueue, // queue must be dropped before the base to avoid deadlock
    base: BaseConsumer<C>,
    wakers: Arc<WakerSlab>,
    _shutdown_trigger: oneshot::Sender<()>,
    _runtime: PhantomData<R>,
}

#[async_trait::async_trait]
impl<R> FromClientConfig for StreamConsumer<DefaultConsumerContext, R>
where
    R: AsyncRuntime,
{
    async fn from_config(config: &ClientConfig) -> KafkaResult<Self> {
        StreamConsumer::from_config_and_context(config, DefaultConsumerContext).await
    }
}

/// Creates a new `StreamConsumer` starting from a [`ClientConfig`].
#[async_trait::async_trait]
impl<C, R> FromClientConfigAndContext<C> for StreamConsumer<C, R>
where
    C: ConsumerContext + 'static,
    R: AsyncRuntime,
{
    async fn from_config_and_context(config: &ClientConfig, context: C) -> KafkaResult<Self> {
        let native_config = config.create_native_config()?;
        let poll_interval = {
            let millis: u64 = native_config
                .get("max.poll.interval.ms")?
                .parse()
                .expect("librdkafka validated config value is valid u64");
            Duration::from_millis(millis)
        };

        let base = BaseConsumer::new(config, native_config, context)?;
        let native_ptr = base.client().native_ptr() as usize;

        // Redirect rdkafka's main queue to the consumer queue so that we only
        // need to listen to the consumer queue to observe events like
        // rebalancings and stats.
        unsafe { rdsys::rd_kafka_poll_set_consumer(base.client().native_ptr()) };

        let queue = base.client().consumer_queue().ok_or_else(|| {
            KafkaError::ClientCreation("librdkafka failed to create consumer queue".into())
        })?;
        let wakers = Arc::new(WakerSlab::new());
        unsafe { enable_nonempty_callback(&queue, &wakers) }

        // We need to make sure we poll the consumer at least once every max
        // poll interval, *unless* the processing task has wedged. To accomplish
        // this, we launch a background task that sends spurious wakeup
        // notifications at half the max poll interval. An unwedged processing
        // task will wake up and poll the consumer with plenty of time to spare,
        // while a wedged processing task will not.
        //
        // The default max poll interval is 5m, so there is essentially no
        // performance impact to these spurious wakeups.
        let (shutdown_trigger, shutdown_tripwire) = oneshot::channel();
        let mut shutdown_tripwire = shutdown_tripwire.fuse();
        R::spawn({
            let wakers = wakers.clone();
            async move {
                trace!("Starting stream consumer wake loop: 0x{:x}", native_ptr);
                loop {
                    let delay = R::delay_for(poll_interval / 2).fuse();
                    pin_mut!(delay);
                    match future::select(&mut delay, &mut shutdown_tripwire).await {
                        Either::Left(_) => wakers.wake_all(),
                        Either::Right(_) => break,
                    }
                }
                trace!("Shut down stream consumer wake loop: 0x{:x}", native_ptr);
            }
        });

        Ok(StreamConsumer {
            base,
            wakers,
            queue,
            _shutdown_trigger: shutdown_trigger,
            _runtime: PhantomData,
        })
    }
}

impl<C, R> StreamConsumer<C, R>
where
    C: ConsumerContext + 'static,
{
    /// Constructs a stream that yields messages from this consumer.
    ///
    /// It is legal to have multiple live message streams for the same consumer,
    /// and to move those message streams across threads. Note, however, that
    /// the message streams share the same underlying state. A message received
    /// by the consumer will be delivered to only one of the live message
    /// streams. If you seek the underlying consumer, all message streams
    /// created from the consumer will begin to draw messages from the new
    /// position of the consumer.
    ///
    /// If you want multiple independent views of a Kafka topic, create multiple
    /// consumers, not multiple message streams.
    pub fn stream(&self) -> MessageStream<'_> {
        MessageStream::new(&self.wakers, &self.queue)
    }

    /// Receives the next message from the stream.
    ///
    /// This method will block until the next message is available or an error
    /// occurs. It is legal to call `recv` from multiple threads simultaneously.
    ///
    /// This method is [cancellation safe].
    ///
    /// Note that this method is exactly as efficient as constructing a
    /// single-use message stream and extracting one message from it:
    ///
    /// ```
    /// use futures::stream::StreamExt;
    /// # use madsim_rdkafka::consumer::StreamConsumer;
    ///
    /// # async fn example(consumer: StreamConsumer) {
    /// consumer.stream().next().await.expect("MessageStream never returns None");
    /// # }
    /// ```
    ///
    /// [cancellation safe]: https://docs.rs/tokio/latest/tokio/macro.select.html#cancellation-safety
    pub async fn recv(&self) -> Result<BorrowedMessage<'_>, KafkaError> {
        self.stream()
            .next()
            .await
            .expect("kafka streams never terminate")
    }

    /// Splits messages for the specified partition into their own stream.
    ///
    /// If the `topic` or `partition` is invalid, returns `None`.
    ///
    /// After calling this method, newly-fetched messages for the specified
    /// partition will be returned via [`StreamPartitionQueue::recv`] rather
    /// than [`StreamConsumer::recv`]. Note that there may be buffered messages
    /// for the specified partition that will continue to be returned by
    /// `StreamConsumer::recv`. For best results, call `split_partition_queue`
    /// before the first call to
    /// `StreamConsumer::recv`.
    ///
    /// You must periodically await `StreamConsumer::recv`, even if no messages
    /// are expected, to serve callbacks. Consider using a background task like:
    ///
    /// ```
    /// # use madsim_rdkafka::consumer::StreamConsumer;
    /// # use tokio::task::JoinHandle;
    /// # async fn example(stream_consumer: StreamConsumer) -> JoinHandle<()> {
    /// tokio::spawn(async move {
    ///     let message = stream_consumer.recv().await;
    ///     panic!("main stream consumer queue unexpectedly received message: {:?}", message);
    /// })
    /// # }
    /// ```
    ///
    /// Note that calling [`Consumer::assign`] will deactivate any existing
    /// partition queues. You will need to call this method for every partition
    /// that should be split after every call to `assign`.
    ///
    /// Beware that this method is implemented for `&Arc<Self>`, not `&self`.
    /// You will need to wrap your consumer in an `Arc` in order to call this
    /// method. This design permits moving the partition queue to another thread
    /// while ensuring the partition queue does not outlive the consumer.
    pub fn split_partition_queue(
        self: &Arc<Self>,
        topic: &str,
        partition: i32,
    ) -> Option<StreamPartitionQueue<C, R>> {
        let topic = match CString::new(topic) {
            Ok(topic) => topic,
            Err(_) => return None,
        };
        let queue = unsafe {
            NativeQueue::from_ptr(rdsys::rd_kafka_queue_get_partition(
                self.base.client().native_ptr(),
                topic.as_ptr(),
                partition,
            ))
        };
        queue.map(|queue| {
            let wakers = Arc::new(WakerSlab::new());
            unsafe {
                rdsys::rd_kafka_queue_forward(queue.ptr(), ptr::null_mut());
                enable_nonempty_callback(&queue, &wakers);
            }
            StreamPartitionQueue {
                queue,
                wakers,
                _consumer: self.clone(),
            }
        })
    }
}

#[async_trait::async_trait]
impl<C, R> Consumer<C> for StreamConsumer<C, R>
where
    C: ConsumerContext,
    R: AsyncRuntime,
{
    fn client(&self) -> &Client<C> {
        self.base.client()
    }

    fn group_metadata(&self) -> Option<ConsumerGroupMetadata> {
        self.base.group_metadata()
    }

    fn subscribe(&self, topics: &[&str]) -> KafkaResult<()> {
        self.base.subscribe(topics)
    }

    fn unsubscribe(&self) {
        self.base.unsubscribe();
    }

    fn assign(&self, assignment: &TopicPartitionList) -> KafkaResult<()> {
        self.base.assign(assignment)
    }

    fn unassign(&self) -> KafkaResult<()> {
        self.base.unassign()
    }

    fn incremental_assign(&self, assignment: &TopicPartitionList) -> KafkaResult<()> {
        self.base.incremental_assign(assignment)
    }

    fn incremental_unassign(&self, assignment: &TopicPartitionList) -> KafkaResult<()> {
        self.base.incremental_unassign(assignment)
    }

    fn assignment_lost(&self) -> bool {
        self.base.assignment_lost()
    }

    async fn seek<T: Into<Timeout> + Send>(
        &self,
        topic: &str,
        partition: i32,
        offset: Offset,
        timeout: T,
    ) -> KafkaResult<()> {
        self.base.seek(topic, partition, offset, timeout).await
    }

    async fn seek_partitions<T: Into<Timeout> + Send>(
        &self,
        topic_partition_list: TopicPartitionList,
        timeout: T,
    ) -> KafkaResult<TopicPartitionList> {
        self.base
            .seek_partitions(topic_partition_list, timeout)
            .await
    }

    async fn commit(
        &self,
        topic_partition_list: &TopicPartitionList,
        mode: CommitMode,
    ) -> KafkaResult<()> {
        self.base.commit(topic_partition_list, mode).await
    }

    async fn commit_consumer_state(&self, mode: CommitMode) -> KafkaResult<()> {
        self.base.commit_consumer_state(mode).await
    }

    async fn commit_message(
        &self,
        message: &BorrowedMessage<'_>,
        mode: CommitMode,
    ) -> KafkaResult<()> {
        self.base.commit_message(message, mode).await
    }

    fn store_offset(&self, topic: &str, partition: i32, offset: i64) -> KafkaResult<()> {
        self.base.store_offset(topic, partition, offset)
    }

    fn store_offset_from_message(&self, message: &BorrowedMessage<'_>) -> KafkaResult<()> {
        self.base.store_offset_from_message(message)
    }

    fn store_offsets(&self, tpl: &TopicPartitionList) -> KafkaResult<()> {
        self.base.store_offsets(tpl)
    }

    fn subscription(&self) -> KafkaResult<TopicPartitionList> {
        self.base.subscription()
    }

    fn assignment(&self) -> KafkaResult<TopicPartitionList> {
        self.base.assignment()
    }

    async fn committed<T>(&self, timeout: T) -> KafkaResult<TopicPartitionList>
    where
        T: Into<Timeout> + Send,
        Self: Sized,
    {
        self.base.committed(timeout).await
    }

    async fn committed_offsets<T>(
        &self,
        tpl: TopicPartitionList,
        timeout: T,
    ) -> KafkaResult<TopicPartitionList>
    where
        T: Into<Timeout> + Send,
    {
        self.base.committed_offsets(tpl, timeout).await
    }

    async fn offsets_for_timestamp<T>(
        &self,
        timestamp: i64,
        timeout: T,
    ) -> KafkaResult<TopicPartitionList>
    where
        T: Into<Timeout> + Send,
        Self: Sized,
    {
        self.base.offsets_for_timestamp(timestamp, timeout).await
    }

    async fn offsets_for_times<T>(
        &self,
        timestamps: TopicPartitionList,
        timeout: T,
    ) -> KafkaResult<TopicPartitionList>
    where
        T: Into<Timeout> + Send,
        Self: Sized,
    {
        self.base.offsets_for_times(timestamps, timeout).await
    }

    fn position(&self) -> KafkaResult<TopicPartitionList> {
        self.base.position()
    }

    async fn fetch_metadata<T>(&self, topic: Option<&str>, timeout: T) -> KafkaResult<Metadata>
    where
        T: Into<Timeout> + Send,
        Self: Sized,
    {
        self.base.fetch_metadata(topic, timeout).await
    }

    async fn fetch_watermarks<T>(
        &self,
        topic: &str,
        partition: i32,
        timeout: T,
    ) -> KafkaResult<(i64, i64)>
    where
        T: Into<Timeout> + Send + 'static,
        Self: Sized,
    {
        self.base.fetch_watermarks(topic, partition, timeout).await
    }

    async fn fetch_group_list<T>(&self, group: Option<&str>, timeout: T) -> KafkaResult<GroupList>
    where
        T: Into<Timeout> + Send,
        Self: Sized,
    {
        self.base.fetch_group_list(group, timeout).await
    }

    fn pause(&self, partitions: &TopicPartitionList) -> KafkaResult<()> {
        self.base.pause(partitions)
    }

    fn resume(&self, partitions: &TopicPartitionList) -> KafkaResult<()> {
        self.base.resume(partitions)
    }

    fn rebalance_protocol(&self) -> RebalanceProtocol {
        self.base.rebalance_protocol()
    }
}

/// A message queue for a single partition of a [`StreamConsumer`].
///
/// See the documentation of [`StreamConsumer::split_partition_queue`] for
/// details.
pub struct StreamPartitionQueue<C, R = DefaultRuntime>
where
    C: ConsumerContext,
{
    queue: NativeQueue,
    wakers: Arc<WakerSlab>,
    _consumer: Arc<StreamConsumer<C, R>>,
}

impl<C, R> StreamPartitionQueue<C, R>
where
    C: ConsumerContext,
{
    /// Constructs a stream that yields messages from this partition.
    ///
    /// It is legal to have multiple live message streams for the same
    /// partition, and to move those message streams across threads. Note,
    /// however, that the message streams share the same underlying state. A
    /// message received by the partition will be delivered to only one of the
    /// live message streams. If you seek the underlying partition, all message
    /// streams created from the partition will begin to draw messages from the
    /// new position of the partition.
    ///
    /// If you want multiple independent views of a Kafka partition, create
    /// multiple consumers, not multiple partition streams.
    pub fn stream(&self) -> MessageStream<'_> {
        MessageStream::new(&self.wakers, &self.queue)
    }

    /// Receives the next message from the stream.
    ///
    /// This method will block until the next message is available or an error
    /// occurs. It is legal to call `recv` from multiple threads simultaneously.
    ///
    /// This method is [cancellation safe].
    ///
    /// Note that this method is exactly as efficient as constructing a
    /// single-use message stream and extracting one message from it:
    ///
    /// ```
    /// use futures::stream::StreamExt;
    /// # use madsim_rdkafka::consumer::ConsumerContext;
    /// # use madsim_rdkafka::consumer::stream_consumer::StreamPartitionQueue;
    //
    /// # async fn example<C>(partition_queue: StreamPartitionQueue<C>)
    /// # where
    /// #     C: ConsumerContext {
    /// partition_queue.stream().next().await.expect("MessageStream never returns None");
    /// # }
    /// ```
    ///
    /// [cancellation safe]: https://docs.rs/tokio/latest/tokio/macro.select.html#cancellation-safety
    pub async fn recv(&self) -> Result<BorrowedMessage<'_>, KafkaError> {
        self.stream()
            .next()
            .await
            .expect("kafka streams never terminate")
    }
}

impl<C, R> Drop for StreamPartitionQueue<C, R>
where
    C: ConsumerContext,
{
    fn drop(&mut self) {
        unsafe { disable_nonempty_callback(&self.queue) }
    }
}