pub fn negative_primitive_floats_increasing<T: PrimitiveFloat>() -> PrimitiveFloatIncreasingRange<T> ⓘ
Expand description
Generates all negative primitive floats, in ascending order.
Positive and negative zero are both excluded.
NEGATIVE_INFINITY
is generated first and
-MIN_POSITIVE_SUBNORMAL
is
generated last. The returned iterator is double-ended, so it may be reversed.
Let $\varphi$ be
to_ordered_representation
:
The output is $(\varphi^{-1}(k))_{k=0}^{2^M(2^E-1)-1}$.
The output length is $2^M(2^E-1)$.
- For
f32
, this is $2^{31}-2^{23}$, or 2139095040. - For
f64
, this is $2^{63}-2^{52}$, or 9218868437227405312.
§Complexity per iteration
Constant time and additional memory.
§Examples
use malachite_base::iterators::prefix_to_string;
use malachite_base::num::exhaustive::negative_primitive_floats_increasing;
use malachite_base::num::float::NiceFloat;
assert_eq!(
prefix_to_string(
negative_primitive_floats_increasing::<f32>().map(NiceFloat),
20
),
"[-Infinity, -3.4028235e38, -3.4028233e38, -3.402823e38, -3.4028229e38, -3.4028227e38, \
-3.4028225e38, -3.4028222e38, -3.402822e38, -3.4028218e38, -3.4028216e38, -3.4028214e38, \
-3.4028212e38, -3.402821e38, -3.4028208e38, -3.4028206e38, -3.4028204e38, -3.4028202e38, \
-3.40282e38, -3.4028198e38, ...]"
);
assert_eq!(
prefix_to_string(
negative_primitive_floats_increasing::<f32>()
.rev()
.map(NiceFloat),
20
),
"[-1.0e-45, -3.0e-45, -4.0e-45, -6.0e-45, -7.0e-45, -8.0e-45, -1.0e-44, -1.1e-44, \
-1.3e-44, -1.4e-44, -1.5e-44, -1.7e-44, -1.8e-44, -2.0e-44, -2.1e-44, -2.2e-44, -2.4e-44, \
-2.5e-44, -2.7e-44, -2.8e-44, ...]"
);