pub fn nonzero_finite_primitive_floats_increasing<T: PrimitiveFloat>() -> NonzeroValues<PrimitiveFloatIncreasingRange<T>> ⓘ
Expand description
Generates all finite nonzero primitive floats, in ascending order.
Positive and negative zero are both excluded.
-MAX_FINITE
is generated first and
MAX_FINITE
is generated last. The returned
iterator is double-ended, so it may be reversed.
Let $\varphi$ be
to_ordered_representation
:
The output is $$ (\varphi^{-1}(k))_ {k=1}^{2^M(2^E-1)-1} ⧺ (\varphi^{-1}(k))_ {k=2^M(2^E-1)+2}^{2^{M+1}(2^E-1)} $$.
The output length is $2^{M+1}(2^E-1)-2$.
- For
f32
, this is $2^{32}-2^{24}-2$, or 4278190078. - For
f64
, this is $2^{64}-2^{53}-2$, or 18437736874454810622.
§Complexity per iteration
Constant time and additional memory.
§Examples
use malachite_base::iterators::prefix_to_string;
use malachite_base::num::exhaustive::nonzero_finite_primitive_floats_increasing;
use malachite_base::num::float::NiceFloat;
assert_eq!(
prefix_to_string(
nonzero_finite_primitive_floats_increasing::<f32>().map(NiceFloat),
20
),
"[-3.4028235e38, -3.4028233e38, -3.402823e38, -3.4028229e38, -3.4028227e38, \
-3.4028225e38, -3.4028222e38, -3.402822e38, -3.4028218e38, -3.4028216e38, -3.4028214e38, \
-3.4028212e38, -3.402821e38, -3.4028208e38, -3.4028206e38, -3.4028204e38, -3.4028202e38, \
-3.40282e38, -3.4028198e38, -3.4028196e38, ...]"
);
assert_eq!(
prefix_to_string(
nonzero_finite_primitive_floats_increasing::<f32>()
.rev()
.map(NiceFloat),
20
),
"[3.4028235e38, 3.4028233e38, 3.402823e38, 3.4028229e38, 3.4028227e38, 3.4028225e38, \
3.4028222e38, 3.402822e38, 3.4028218e38, 3.4028216e38, 3.4028214e38, 3.4028212e38, \
3.402821e38, 3.4028208e38, 3.4028206e38, 3.4028204e38, 3.4028202e38, 3.40282e38, \
3.4028198e38, 3.4028196e38, ...]"
);