pub fn positive_primitive_floats_increasing<T: PrimitiveFloat>() -> PrimitiveFloatIncreasingRange<T> ⓘ
Expand description
Generates all positive primitive floats, in ascending order.
Positive and negative zero are both excluded.
MIN_POSITIVE_SUBNORMAL
is
generated first and INFINITY
is generated last. The returned iterator is
double-ended, so it may be reversed.
Let $\varphi$ be
to_ordered_representation
:
The output is $(\varphi^{-1}(k))_{k=2^M(2^E-1)+2}^{2^{M+1}(2^E-1)+1}$.
The output length is $2^M(2^E-1)$.
- For
f32
, this is $2^{31}-2^{23}$, or 2139095040. - For
f64
, this is $2^{63}-2^{52}$, or 9218868437227405312.
§Complexity per iteration
Constant time and additional memory.
§Examples
use malachite_base::iterators::prefix_to_string;
use malachite_base::num::exhaustive::positive_primitive_floats_increasing;
use malachite_base::num::float::NiceFloat;
assert_eq!(
prefix_to_string(
positive_primitive_floats_increasing::<f32>().map(NiceFloat),
20
),
"[1.0e-45, 3.0e-45, 4.0e-45, 6.0e-45, 7.0e-45, 8.0e-45, 1.0e-44, 1.1e-44, 1.3e-44, \
1.4e-44, 1.5e-44, 1.7e-44, 1.8e-44, 2.0e-44, 2.1e-44, 2.2e-44, 2.4e-44, 2.5e-44, 2.7e-44, \
2.8e-44, ...]"
);
assert_eq!(
prefix_to_string(
positive_primitive_floats_increasing::<f32>()
.rev()
.map(NiceFloat),
20
),
"[Infinity, 3.4028235e38, 3.4028233e38, 3.402823e38, 3.4028229e38, 3.4028227e38, \
3.4028225e38, 3.4028222e38, 3.402822e38, 3.4028218e38, 3.4028216e38, 3.4028214e38, \
3.4028212e38, 3.402821e38, 3.4028208e38, 3.4028206e38, 3.4028204e38, 3.4028202e38, \
3.40282e38, 3.4028198e38, ...]"
);