pub fn primitive_float_increasing_range<T: PrimitiveFloat>(
    a: T,
    b: T,
) -> PrimitiveFloatIncreasingRange<T> 
Expand description

Generates all primitive floats in the half-open interval $[a, b)$, in ascending order.

Positive and negative zero are treated as two distinct values, with negative zero being smaller than zero.

NiceFloat(a) must be less than or equal to NiceFloat(b). If NiceFloat(a) and NiceFloat(b) are equal, the range is empty. This function cannot create a range that includes INFINITY; for that, use primitive_float_increasing_inclusive_range.

Let $\varphi$ be to_ordered_representation:

The output is $(\varphi^{-1}(k))_{k=\varphi(a)}^{\varphi(b)-1}$.

The output length is $\varphi(b) - \varphi(a)$.

§Complexity per iteration

Constant time and additional memory.

§Panics

Panics if NiceFloat(a) > NiceFloat(b).

§Examples

use malachite_base::iterators::prefix_to_string;
use malachite_base::num::exhaustive::primitive_float_increasing_range;
use malachite_base::num::float::NiceFloat;

assert_eq!(
    prefix_to_string(
        primitive_float_increasing_range::<f32>(1.0, 2.0).map(NiceFloat),
        20
    ),
    "[1.0, 1.0000001, 1.0000002, 1.0000004, 1.0000005, 1.0000006, 1.0000007, 1.0000008, \
    1.000001, 1.0000011, 1.0000012, 1.0000013, 1.0000014, 1.0000015, 1.0000017, 1.0000018, \
    1.0000019, 1.000002, 1.0000021, 1.0000023, ...]"
);
assert_eq!(
    prefix_to_string(
        primitive_float_increasing_range::<f32>(1.0, 2.0)
            .rev()
            .map(NiceFloat),
        20,
    ),
    "[1.9999999, 1.9999998, 1.9999996, 1.9999995, 1.9999994, 1.9999993, 1.9999992, 1.999999, \
    1.9999989, 1.9999988, 1.9999987, 1.9999986, 1.9999985, 1.9999983, 1.9999982, 1.9999981, \
    1.999998, 1.9999979, 1.9999977, 1.9999976, ...]",
);