1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use core::cmp::Ordering::{self, *};

/// An iterator that generates the [`Ordering`]s of adjacent elements of a given iterator.
///
/// This `struct` is created by [`delta_directions`]; see its documentation for more.
#[derive(Clone, Debug)]
pub struct DeltaDirections<I: Iterator>
where
    I::Item: Ord,
{
    previous: Option<I::Item>,
    xs: I,
}

impl<I: Iterator> Iterator for DeltaDirections<I>
where
    I::Item: Ord,
{
    type Item = Ordering;

    fn next(&mut self) -> Option<Ordering> {
        if self.previous.is_none() {
            if let Some(x) = self.xs.next() {
                self.previous = Some(x);
            } else {
                return None;
            }
        }
        self.xs.next().and_then(|x| {
            let result = Some(x.cmp(self.previous.as_ref().unwrap()));
            self.previous = Some(x);
            result
        })
    }
}

/// Returns an iterator that generates the [`Ordering`]s of adjacent pairs of elements of a given
/// iterator.
///
/// To put it another way (at least for types where subtraction is defined), the returned iterator
/// produces the signs of the finite differences of the input iterator.
///
/// $f((x_k)_{k=0}^N) = (\\operatorname{cmp}(x_k, x\_{k-1}))\_{k=1}^N$, where $N$ may be $\infty$.
///
/// The output length is infinite if `xs` is infinite, or $\max(n - 1, 0)$ otherwise, where $n$ is
/// `xs.count()`.
///
/// # Examples
/// ```
/// use itertools::Itertools;
/// use malachite_base::iterators::comparison::delta_directions;
/// use std::cmp::Ordering::*;
///
/// assert_eq!(
///     delta_directions([3, 1, 4, 1, 5, 9].into_iter()).collect_vec(),
///     &[Less, Greater, Less, Greater, Greater]
/// )
/// ```
#[inline]
pub const fn delta_directions<I: Iterator>(xs: I) -> DeltaDirections<I>
where
    I::Item: Ord,
{
    DeltaDirections { previous: None, xs }
}

/// Determines whether each element of an iterator is greater than the preceding one.
///
/// This function will hang if given an infinite strictly ascending iterator.
///
/// $$
/// f((x_k)\_{k=0}^N) = \\bigwedge\_{k=1}^N{x\_k > x\_{k-1}},
/// $$
/// where $N$ may be $\infty$.
///
/// # Examples
/// ```
/// use malachite_base::iterators::comparison::is_strictly_ascending;
///
/// assert_eq!(is_strictly_ascending([1, 2, 3, 4].into_iter()), true);
/// assert_eq!(is_strictly_ascending([1, 2, 2, 4].into_iter()), false);
/// ```
#[inline]
pub fn is_strictly_ascending<I: Iterator>(xs: I) -> bool
where
    I::Item: Ord,
{
    delta_directions(xs).all(|x| x == Greater)
}

/// Determines whether each element of an iterator is less than the preceding one.
///
/// This function will hang if given an infinite strictly descending iterator.
///
/// $$
/// f((x_k)\_{k=0}^N) = \\bigwedge\_{k=1}^N{x\_k < x\_{k-1}},
/// $$
/// where $N$ may be $\infty$.
///
/// # Examples
/// ```
/// use malachite_base::iterators::comparison::is_strictly_descending;
///
/// assert_eq!(is_strictly_descending([4, 3, 2, 1].into_iter()), true);
/// assert_eq!(is_strictly_descending([4, 2, 2, 1].into_iter()), false);
/// ```
#[inline]
pub fn is_strictly_descending<I: Iterator>(xs: I) -> bool
where
    I::Item: Ord,
{
    delta_directions(xs).all(|x| x == Less)
}

/// Determines whether each element of an iterator is greater than or equal to the preceding one.
///
/// This function will hang if given an infinite weakly ascending iterator.
///
/// $$
/// f((x_k)\_{k=0}^N) = \\bigwedge\_{k=1}^N{x\_k \geq x\_{k-1}},
/// $$
/// where $N$ may be $\infty$.
///
/// # Examples
/// ```
/// use malachite_base::iterators::comparison::is_weakly_ascending;
///
/// assert_eq!(is_weakly_ascending([1, 2, 3, 4].into_iter()), true);
/// assert_eq!(is_weakly_ascending([1, 2, 2, 4].into_iter()), true);
/// assert_eq!(is_weakly_ascending([1, 3, 2, 4].into_iter()), false);
/// ```
#[inline]
pub fn is_weakly_ascending<I: Iterator>(xs: I) -> bool
where
    I::Item: Ord,
{
    delta_directions(xs).all(|x| x != Less)
}

/// Determines whether each element of an iterator is less than or equal to the preceding one.
///
/// This function will hang if given an infinite weakly descending iterator.
///
/// $$
/// f((x_k)\_{k=0}^N) = \\bigwedge\_{k=1}^N{x\_k \leq x\_{k-1}},
/// $$
/// where $N$ may be $\infty$.
///
/// # Examples
/// ```
/// use malachite_base::iterators::comparison::is_weakly_descending;
///
/// assert_eq!(is_weakly_descending([4, 3, 2, 1].into_iter()), true);
/// assert_eq!(is_weakly_descending([4, 2, 2, 1].into_iter()), true);
/// assert_eq!(is_weakly_descending([4, 2, 3, 1].into_iter()), false);
/// ```
#[inline]
pub fn is_weakly_descending<I: Iterator>(xs: I) -> bool
where
    I::Item: Ord,
{
    delta_directions(xs).all(|x| x != Greater)
}

/// Determines whether the sequence strictly zigzags.
///
/// A strictly zigzagging sequence is one where every odd-indexed element is greater than its
/// even-indexed neighbors, or one where every odd-indexed element is less than its even-indexed
/// neighbors.
///
/// This function will hang if given an infinite strictly zigzagging iterator.
///
/// # Examples
/// ```
/// use malachite_base::iterators::comparison::is_strictly_zigzagging;
///
/// assert_eq!(is_strictly_zigzagging([1, 2, 3, 4].into_iter()), false);
/// assert_eq!(is_strictly_zigzagging([4, 3, 2, 1].into_iter()), false);
/// assert_eq!(is_strictly_zigzagging([1, 3, 2, 4].into_iter()), true);
/// assert_eq!(is_strictly_zigzagging([1, 2, 2, 4].into_iter()), false);
/// ```
pub fn is_strictly_zigzagging<I: Iterator>(xs: I) -> bool
where
    I::Item: Ord,
{
    let mut previous = None;
    for direction in delta_directions(xs) {
        if direction == Equal {
            return false;
        }
        if let Some(previous) = previous {
            if direction == previous {
                return false;
            }
        }
        previous = Some(direction);
    }
    true
}

/// Determines whether the sequence weakly zigzags.
///
/// A weakly zigzagging sequence is one where every odd-indexed element is greater than or equal to
/// its even-indexed neighbors, or one where every odd-indexed element is less than or equal to its
/// even-indexed neighbors.
///
/// This function will hang if given an infinite strictly zigzagging iterator.
///
/// # Examples
/// ```
/// use malachite_base::iterators::comparison::is_weakly_zigzagging;
///
/// assert_eq!(is_weakly_zigzagging([1, 2, 3, 4].into_iter()), false);
/// assert_eq!(is_weakly_zigzagging([4, 3, 2, 1].into_iter()), false);
/// assert_eq!(is_weakly_zigzagging([1, 3, 2, 4].into_iter()), true);
/// assert_eq!(is_weakly_zigzagging([1, 2, 2, 4].into_iter()), true);
/// ```
pub fn is_weakly_zigzagging<I: Iterator>(xs: I) -> bool
where
    I::Item: Ord,
{
    let mut previous = None;
    for direction in delta_directions(xs) {
        if let Some(ref mut previous) = &mut previous {
            if direction == *previous {
                return false;
            }
            *previous = previous.reverse();
        } else if direction != Equal {
            previous = Some(direction);
        }
    }
    true
}