1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::num::arithmetic::traits::{
    BinomialCoefficient, CheckedBinomialCoefficient, UnsignedAbs,
};
use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::OverflowingFrom;
use crate::num::exhaustive::primitive_int_increasing_inclusive_range;
use core::cmp::min;

fn checked_binomial_coefficient_unsigned<T: PrimitiveUnsigned>(n: T, mut k: T) -> Option<T> {
    if k > n {
        return Some(T::ZERO);
    }
    k = min(k, n - k);
    if k == T::ZERO {
        Some(T::ONE)
    } else if k == T::ONE {
        Some(n)
    } else if k == T::TWO {
        (if n.even() { n - T::ONE } else { n }).checked_mul(n >> 1)
    } else {
        // Some binomial coefficient algorithms have intermediate results greater than the final
        // result, risking overflow. This one does not.
        let mut product = n - k + T::ONE;
        let mut numerator = product;
        for i in primitive_int_increasing_inclusive_range(T::TWO, k) {
            numerator += T::ONE;
            let gcd = numerator.gcd(i);
            product /= i / gcd;
            product = product.checked_mul(numerator / gcd)?;
        }
        Some(product)
    }
}

fn checked_binomial_coefficient_signed<
    U: PrimitiveUnsigned,
    S: OverflowingFrom<U> + PrimitiveSigned + TryFrom<U> + UnsignedAbs<Output = U>,
>(
    n: S,
    k: S,
) -> Option<S> {
    if k < S::ZERO {
        return None;
    }
    if n >= S::ZERO {
        S::try_from(U::checked_binomial_coefficient(
            n.unsigned_abs(),
            k.unsigned_abs(),
        )?)
        .ok()
    } else {
        let k = k.unsigned_abs();
        let b = U::checked_binomial_coefficient(n.unsigned_abs() + k - U::ONE, k)?;
        if k.even() {
            S::try_from(b).ok()
        } else {
            let (b, overflow) = S::overflowing_from(b);
            if overflow {
                if b == S::MIN {
                    Some(S::MIN)
                } else {
                    None
                }
            } else {
                Some(-b)
            }
        }
    }
}

macro_rules! impl_binomial_coefficient_unsigned {
    ($t:ident) => {
        impl CheckedBinomialCoefficient for $t {
            /// Computes the binomial coefficient of two numbers. If the inputs are too large, the
            /// function returns `None`.
            ///
            /// $$
            /// f(n, k) = \\begin{cases}
            ///     \operatorname{Some}(\binom{n}{k}) & \text{if} \\quad \binom{n}{k} < 2^W, \\\\
            ///     \operatorname{None} & \text{if} \\quad \binom{n}{k} \geq 2^W,
            /// \\end{cases}
            /// $$
            /// where $W$ is `Self::WIDTH`.
            ///
            /// # Worst-case complexity
            /// $T(k) = O(k)$
            ///
            /// $M(k) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $k$ is `k`.
            ///
            /// # Examples
            /// See [here](super::binomial_coefficient#checked_binomial_coefficient).
            #[inline]
            fn checked_binomial_coefficient(n: $t, k: $t) -> Option<$t> {
                checked_binomial_coefficient_unsigned(n, k)
            }
        }
    };
}
apply_to_unsigneds!(impl_binomial_coefficient_unsigned);

macro_rules! impl_binomial_coefficient_signed {
    ($t:ident) => {
        impl CheckedBinomialCoefficient for $t {
            /// Computes the binomial coefficient of two numbers. If the inputs are too large, the
            /// function returns `None`.
            ///
            /// The second argument must be non-negative, but the first may be negative. If it is,
            /// the identity $\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$ is used.
            ///
            /// $$
            /// f(n, k) = \\begin{cases}
            ///     \operatorname{Some}(\binom{n}{k}) & \text{if} \\quad n \geq 0 \\ \text{and}
            ///         \\ -2^{W-1} \leq \binom{n}{k} < 2^{W-1}, \\\\
            ///     \operatorname{Some}((-1)^k \binom{-n+k-1}{k}) & \text{if} \\quad n < 0
            ///         \\ \text{and} \\ -2^{W-1} \leq \binom{n}{k} < 2^{W-1}, \\\\
            ///     \operatorname{None} & \\quad \\text{otherwise},
            /// \\end{cases}
            /// $$
            /// where $W$ is `Self::WIDTH`.
            ///
            /// # Worst-case complexity
            /// $T(k) = O(k)$
            ///
            /// $M(k) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $k$ is `k.abs()`.
            ///
            /// # Examples
            /// See [here](super::binomial_coefficient#checked_binomial_coefficient).
            #[inline]
            fn checked_binomial_coefficient(n: $t, k: $t) -> Option<$t> {
                checked_binomial_coefficient_signed(n, k)
            }
        }
    };
}
apply_to_signeds!(impl_binomial_coefficient_signed);

macro_rules! impl_binomial_coefficient_primitive_int {
    ($t:ident) => {
        impl BinomialCoefficient for $t {
            /// Computes the binomial coefficient of two numbers. If the inputs are too large, the
            /// function panics.
            ///
            /// The second argument must be non-negative, but the first may be negative. If it is,
            /// the identity $\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$ is used.
            ///
            /// $$
            /// f(n, k) = \\begin{cases}
            ///     \binom{n}{k} & \text{if} \\quad n \geq 0, \\\\
            ///     (-1)^k \binom{-n+k-1}{k} & \text{if} \\quad n < 0.
            /// \\end{cases}
            /// $$
            ///
            /// # Worst-case complexity
            /// $T(k) = O(k)$
            ///
            /// $M(k) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $k$ is `k.abs()`.
            ///
            /// # Panics
            /// Panics if the result is not representable by this type, or if $k$ is negative.
            ///
            /// # Examples
            /// See [here](super::binomial_coefficient#binomial_coefficient).
            #[inline]
            fn binomial_coefficient(n: $t, k: $t) -> $t {
                $t::checked_binomial_coefficient(n, k).unwrap()
            }
        }
    };
}
apply_to_primitive_ints!(impl_binomial_coefficient_primitive_int);