1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{CheckedSubMul, UnsignedAbs};
use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::WrappingFrom;
fn checked_sub_mul_unsigned<T: PrimitiveUnsigned>(x: T, y: T, z: T) -> Option<T> {
y.checked_mul(z).and_then(|yz| x.checked_sub(yz))
}
macro_rules! impl_checked_sub_mul_unsigned {
($t:ident) => {
impl CheckedSubMul<$t> for $t {
type Output = $t;
/// Subtracts a number by the product of two other numbers, returning `None` if the
/// result cannot be represented.
///
/// $$
/// f(x, y, z) = \\begin{cases}
/// \operatorname{Some}(x - yz) & \text{if} \\quad x \geq yz, \\\\
/// \operatorname{None} & \text{if} \\quad x < yz,
/// \\end{cases}
/// $$
/// where $W$ is `Self::WIDTH`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::checked_sub_mul#checked_sub_mul).
#[inline]
fn checked_sub_mul(self, y: $t, z: $t) -> Option<$t> {
checked_sub_mul_unsigned(self, y, z)
}
}
};
}
apply_to_unsigneds!(impl_checked_sub_mul_unsigned);
fn checked_sub_mul_signed<
U: Ord + PrimitiveUnsigned,
T: PrimitiveSigned + UnsignedAbs<Output = U> + WrappingFrom<U>,
>(
x: T,
y: T,
z: T,
) -> Option<T> {
if y == T::ZERO || z == T::ZERO {
return Some(x);
}
let x_sign = x >= T::ZERO;
if x_sign == ((y >= T::ZERO) != (z >= T::ZERO)) {
x.checked_sub(y.checked_mul(z)?)
} else {
let x = x.unsigned_abs();
let product = y.unsigned_abs().checked_mul(z.unsigned_abs())?;
let result = T::wrapping_from(if x_sign {
x.wrapping_sub(product)
} else {
product.wrapping_sub(x)
});
if x >= product || (x_sign == (result < T::ZERO)) {
Some(result)
} else {
None
}
}
}
macro_rules! impl_checked_sub_mul_signed {
($t:ident) => {
impl CheckedSubMul<$t> for $t {
type Output = $t;
/// Subtracts a number by the product of two other numbers, returning `None` if the
/// result cannot be represented.
///
/// $$
/// f(x, y, z) = \\begin{cases}
/// \operatorname{Some}(x - yz) &
/// \text{if} \\quad -2^{W-1} \leq x - yz < 2^{W-1}, \\\\
/// \operatorname{None} &
/// \text{if} \\quad x - yz < -2^{W-1} \\ \mathrm{or}
/// \\ xy - z \geq 2^{W-1}, \\\\
/// \\end{cases}
/// $$
/// where $W$ is `Self::WIDTH`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::checked_sub_mul#checked_sub_mul).
#[inline]
fn checked_sub_mul(self, y: $t, z: $t) -> Option<$t> {
checked_sub_mul_signed(self, y, z)
}
}
};
}
apply_to_signeds!(impl_checked_sub_mul_signed);